BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP
要求比值最大,当然用分数规划。
二分答案,转化为选取一个最大的联通块使得它们的和大于0
然后我们直接DP。
复杂度$O(n^2\log {n})$
#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define ll long long
#define inf 1e15
#define eps 1e-6
#define mp make_pair
#define maxn 2505
int k,n;
double s[maxn],p[maxn],l,r,mid,dp[maxn][maxn],tmp[maxn];
int h[maxn],to[maxn],ne[maxn],en=0,siz[maxn]; void add(int a,int b)
{to[en]=b;ne[en]=h[a];h[a]=en++;} void Tree_DP(int o)
{
dp[o][1]=p[o]-mid*s[o];siz[o]=1;
for (int i=h[o];i>=0;i=ne[i])
{
Tree_DP(to[i]);
F(j,0,siz[o]+siz[to[i]]) tmp[j]=-inf;
F(j,1,siz[o]) F(k,0,siz[to[i]])
tmp[j+k]=max(tmp[j+k],dp[o][j]+dp[to[i]][k]);
F(j,0,siz[o]+siz[to[i]]) dp[o][j]=max(dp[o][j],tmp[j]);
siz[o]+=siz[to[i]];
}
} int main()
{
memset(h,-1,sizeof h);
scanf("%d%d",&k,&n);k++;
F(i,1,n)
{
int x;
scanf("%lf%lf%d",&s[i],&p[i],&x);
add(x,i);
}
l=0;r=1e10;
while (fabs(r-l)>eps)
{
mid=(l+r)/2;
F(i,0,n) F(j,0,k) dp[i][j]=-inf;
s[0]=1;p[0]=mid;
Tree_DP(0);
int flag=0;
if (dp[0][k]>=0) l=mid;
else r=mid;
}
printf("%.3f\n",l);
}
BZOJ 4753 [Jsoi2016]最佳团体 ——01分数规划 树形DP的更多相关文章
- BZOJ.4753.[JSOI2016]最佳团体(01分数规划 树形背包DP)
题目链接 \(Description\) 每个点有费用si与价值pi,要求选一些带根的连通块,总大小为k,使得 \(\frac{∑pi}{∑si}\) 最大 \(Solution\) 01分数规划,然 ...
- 【BZOJ】4753: [Jsoi2016]最佳团体 01分数规划+树上背包
[题意]n个人,每个人有价值ai和代价bi和一个依赖对象ri<i,选择 i 时 ri 也必须选择(ri=0时不依赖),求选择k个人使得Σai/Σbi最大.n<=2500,ai,bi< ...
- BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)
看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- bzoj 4753 最佳团体 —— 01分数规划+树形背包
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4753 注意赋初值为 -inf: eps 设为 1e-3 会 WA ... 代码如下: #in ...
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- bzoj 4753: [Jsoi2016]最佳团体【01分数规划+二分+树上背包】
01分数规划,二分答案然后把判别式变成Σp[i]-Σs[i]*mid>=0,然后树上背包判断,设f[i][j]为在i点子树里选j个的最大收益,随便背包一下就好 最丧病的是神卡常--转移的时候要另 ...
- P1642 规划 01分数规划+树形DP
$ \color{#0066ff}{ 题目描述 }$ 某地方有N个工厂,有N-1条路连接它们,且它们两两都可达.每个工厂都有一个产量值和一个污染值.现在工厂要进行规划,拆除其中的M个工厂,使得剩下的工 ...
随机推荐
- Hibernate:Disjunction&Conjunction构造复杂的查询条件.
Hibernate:Disjunction&Conjunction构造复杂的查询条件 Disjunction和Conjunction是逻辑或和逻辑与,如下: 用来组合一组逻辑或[or]条件的方 ...
- 【数据库-MySQL on Azure】如何使用 MySQL EntityFramework 组件处理 MYSQL PaaS DB
MySQL Database on Azure 是 Azure 平台上推出的 MySQL 云数据库服务,通过全面兼容 MySQL 协议,为用户提供了一个全托管的性能稳定.可快速部署.高可用.高安全性的 ...
- js对象引用的注意
var p = {}; var arr = []; function a(param) { // var i = param.a; for (var i = 0; i < 3; i++) { p ...
- DataModel doesn't have preference values
mahout和hadoop实现简单的智能推荐系统的时候,出现了一下几个方面的错误 DataModel doesn't have preference values 意思是DataModel中没有找到初 ...
- WPF中实现两个窗口之间传值
在使用WPF的时候,我们经常会用到窗体之间传值,下面示例主窗口传值到子窗口,子窗口传值到主窗口的方法. 一.主窗口向子窗口传值 主窗口向子窗口传值主要方法就是在子窗口建立一个接收主窗口值的变量,然后实 ...
- ssh的server安装和安装指定版本的软件的方法
ssh程序分为有客户端程序openssh-client和服务端程序openssh-server.如果需要ssh登陆到别的电脑,需要安装openssh-client,该程序ubuntu是默认安装的.而如 ...
- 实 Jordan 标准型和实 Weyr 标准型
将学习到什么 本节讨论关于实矩阵的实形式的 Jordan 标准型,也讨论关于复矩阵的另外一种形式的 Jordan 标准型,因为它在与交换性有关的问题中很有用. 实 Jordan 标准型 假设 \( ...
- Bootstrap 静态控件
当您需要在一个水平表单内表单标签后放置纯文本时,请在 <p> 上使用 class .form-control-static. 实例: <!DOCTYPE html><ht ...
- shell脚本,100以内的质数有哪些?
[root@localhost wyb]# cat 9zhishu.sh #!/bin/bash ` do ;j<=i-;j++)) do [ $((i%j)) -eq ] && ...
- 寄存器变量 extern 外部变量 外部函数
寄存器变量 这个可以不理睬 register 关键字定义的变量直接放在寄存器当中 寄存器是放在CPU内部的存储单元,它的速度比内存快的多,所以当程序中有10000多次调用同一个变量的时候声明成寄存器变 ...