PAT 1079. 延迟的回文数

给定一个 k+1 位的正整数 N,写成 ak...a1a0 的形式,其中对所有 i 有 0 <= ai < 10 且 ak > 0。N 被称为一个回文数,当且仅当对所有 i 有 ai = ak-i。零也被定义为一个回文数。

非回文数也可以通过一系列操作变出回文数。首先将该数字逆转,再将逆转数与该数相加,如果和还不是一个回文数,就重复这个逆转再相加的操作,直到一个回文数出现。如果一个非回文数可以变出回文数,就称这个数为延迟的回文数。(定义翻译自 https://en.wikipedia.org/wiki/Palindromic_number)

给定任意一个正整数,本题要求你找到其变出的那个回文数。

输入格式:

输入在一行中给出一个不超过1000位的正整数。

输出格式:

对给定的整数,一行一行输出其变出回文数的过程。每行格式如下

A + B = C

其中A是原始的数字,B是A的逆转数,C是它们的和。A从输入的整数开始。重复操作直到C在10步以内变成回文数,这时在一行中输出“C is a palindromic number.”;或者如果10步都没能得到回文数,最后就在一行中输出“Not found in 10 iterations.”。

输入样例 1:

97152

输出样例 1:

97152 + 25179 = 122331
122331 + 133221 = 255552
255552 is a palindromic number.

输入样例 2:

196

输出样例 2:

196 + 691 = 887
887 + 788 = 1675
1675 + 5761 = 7436
7436 + 6347 = 13783
13783 + 38731 = 52514
52514 + 41525 = 94039
94039 + 93049 = 187088
187088 + 880781 = 1067869
1067869 + 9687601 = 10755470
10755470 + 07455701 = 18211171
Not found in 10 iterations.

分析

题目不难,注意一下,若题目给出的数本来就是回文数字,则输出“xxxxxx is a palindromic number. ”

代码如下

#include<iostream>
#include<algorithm>
using namespace std;
string pal(string a){
string b,s;
b.resize(a.size());
copy(a.rbegin(),a.rend(),b.begin()); // 利用反向迭代器和copy快速得到其反转数字
int t=0,n; char c;
for(int i=a.size()-1;i>=0;i--){ // 将数字和其反转数字相加
int n=(a[i]-'0'+b[i]-'0'+t)%10;
t=(a[i]-'0'+b[i]-'0'+t)/10;
c='0'+n;
s.insert(s.begin(),1,c);
}
if(t){
c='0'+t;
s.insert(s.begin(),1,c);
}
cout<<a<<" + "<<b<<" = "<<s<<endl;
return s;
}
int main(){
string s;
cin>>s; int cnt=0;
while(1){
int flag=0;
for(int i=0;i<=(s.size()-1)/2;i++){ // 判断是否是回文数字
if(s[i]!=s[s.size()-1-i])
flag=1;
}
if(flag==0){
cout<<s<<" is a palindromic number.";
break;
}else if(flag==1&&cnt==10){
cout<<"Not found in 10 iterations.";
break;
}
s=pal(s); cnt++;
}
return 0;
}

PAT 1079. 延迟的回文数的更多相关文章

  1. PAT 1079 延迟的回文数(代码+思路)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  2. PAT 乙级 1079 延迟的回文数(20 分)

    1079 延迟的回文数(20 分) 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 且 a​k​​>0.N 被称 ...

  3. PAT(B) 1079 延迟的回文数(Java)

    题目链接:1079 延迟的回文数 (20 point(s)) 题目描述 给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0≤a​i​​<10 ...

  4. PAT Baisc 1079 延迟的回文数 (20 分)

    给定一个 k+1 位的正整数 N,写成 a​k​​⋯a​1​​a​0​​ 的形式,其中对所有 i 有 0 且 a​k​​>0.N 被称为一个回文数,当且仅当对所有 i 有 a​i​​=a​k−i ...

  5. P1079 延迟的回文数

    P1079 延迟的回文数 转跳点:

  6. 【PAT】B1079 延迟的回文数(20 分)

    用了柳婼大佬博客的思路,但实现有不同 没有用string所以要考虑字符串末尾的'\0' 用的stl中的reverse逆置字符串 #include<stdio.h> #include< ...

  7. PAT (Advanced Level) Practice 1019 General Palindromic Number (20 分) (进制转换,回文数)

    A number that will be the same when it is written forwards or backwards is known as a Palindromic Nu ...

  8. hdu1282回文数猜想

    Problem Description 一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数.任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其 ...

  9. C语言 · 特殊回文数

    问题描述 123321是一个非常特殊的数,它从左边读和从右边读是一样的. 输入一个正整数n, 编程求所有这样的五位和六位十进制数,满足各位数字之和等于n . 输入格式 输入一行,包含一个正整数n. 输 ...

随机推荐

  1. 杂项-Java:Druod Monitor

    ylbtech-杂项-Java:Druid Monitor 1.返回顶部 1. https://www.cnblogs.com/wanghuijie/p/druid_monitor.html 2. 2 ...

  2. 7章 Admin

    Admin这个东西本身就已经存在于我们的项目中,是Django自己创建的.admin是Django自带的一个APP. # Application definition INSTALLED_APPS = ...

  3. Java并发编程系列之CyclicBarrier详解

    简介 jdk原文 A synchronization aid that allows a set of threads to all wait for each other to reach a co ...

  4. eccharts-gl 3D立体柱状图

    echarts-gl继承于echarts echarts-gl官方实例https://echarts.baidu.com/examples/index.html#chart-type-globe 代码 ...

  5. [转]C++常用字符串分割方法实例汇总

    本文实例汇总了C++常用字符串分割方法,分享给大家供大家参考.具体分析如下: 我们在编程的时候经常会碰到字符串分割的问题,这里总结下,也方便我们以后查询使用. 一.用strtok函数进行字符串分割 原 ...

  6. python批量下载图片

    从数据库拿了一批图片地址,需要一张一张的把图片下载下来,自从有了python,想到能省事就琢磨如何省事. 代码如下: import urllib.requestf=open("E:\999\ ...

  7. opencv 检测图片中圆形物体(解决乱线问题)

    2018-03-0418:03:12 整体代码如下: def detect_circle_demo (image): # 降噪处理 dst = cv.pyrMeanShiftFiltering(ima ...

  8. dede手机访问网站跳转到手机端模板

    如何手机访问的时候跳转到自己的手机端模板,这时候需要一个js跳转代码:当手机访问的时候直接跳转到手机端 那手机端前提要有手机端的模板 <script> if(navigator.platf ...

  9. Farseer.net轻量级开源框架 入门篇:Where条件的终极使用

    导航 目   录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 查询数据详解 下一篇:Farseer.net轻量级开源框架 中级篇: 事务的使用 ...

  10. PHPStorm+XDebug进行调试

    笔者的开发环境如下: Windows8.1+Apache+PhpStorm+XDebug+Firefox(XDebug helper 1.4.3插件). 一.XDebug安装配置 (1)下载XDebu ...