Given an array consisting of n integers, find the contiguous subarray whose length is greater than or equal to k that has the maximum average value. And you need to output the maximum average value.

Example 1:

Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation:
when length is 5, maximum average value is 10.8,
when length is 6, maximum average value is 9.16667.
Thus return 12.75.

Note:

  1. 1 <= k <= n <= 10,000.
  2. Elements of the given array will be in range [-10,000, 10,000].
  3. The answer with the calculation error less than 10-5 will be accepted.

Idea 1. Brute force, use the idea on maximum subarray(Leetcode 53), for any pairs (i, j), j - i >= k-1, 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far.

Time complexity: O(n2)

Space complexity: O(1)

public class Solution {
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = 0; i < nums.length; ++i) {
double sum = 0;
for(int j = i; j < nums.length; ++j) {
sum += nums[j];
if(j-i + 1 >= k) {
maxAverage = Math.max(maxAverage, sum/(j-i+1));
}
}
} return maxAverage;
}
}

Idea 1.a Brute force, use the idea on Maximum Average Subarray I (Leetcode 643). Linearly find all the maximum average subarray for subarray length >= k.

public class Solution {
public double findMaxAverageWithLengthK(int[] nums, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums[i];
} double maxSum = sum;
for(int i = k; i < nums.length; ++i) {
sum = sum + nums[i] - nums[i-k];
maxSum = Math.max(maxSum, sum);
} return maxSum/k;
}
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = k; i < nums.length; ++i) {
double average = findMaxAverageWithLengthK(nums, i);
maxAverage = Math.max(maxAverage, average);
} return maxAverage;
}
}

Idea 2. Smart idea, use two techniques

1. Use binary search to guess the maxAverage, minValue in the array <= maxAverage <= maxValue in the array, assumed the guesed maxAverage is mid, if there exists a subarray with length >= k whos average is bigger than mid, then the maxAverage must be located between [mid, maxValue], otherwise between [minValue, mid].

2. How to efficiently check if there exists a subarray with length >= k whos average is bigger than mid? do you still remember the cumulative sum in maximum subArray? maximum sum subarray with length >= k can be computed by cumu[j] - min(cumu[i]) where j - i + 1 >= 0. If we deduct each element with mid (nums[i] -mid), the problem is transfered to find if there exists a subarray whoes sum >= 0. Since this is not strictly to find the maxSum, in better case if any subarray's sum >= 0, we terminate the search early and return true; in worst case we search all the subarray and find the maxmum sum, then check if maxSum >= 0.

Time complexity: O(nlogn)

Space complexity: O(1)

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
} if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
double maxSum = -Double.MAX_VALUE;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
maxSum = Math.max(maxSum, sum - minPreviousSum);
if (maxSum >= 0) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
}
}

We can reduce one variable, maxSum, terminate if sum - minPrevious >= 0, sum - minPreviousSum is the maxSum ended at current index.

a. sum - minPrevious < 0 if maxSum > sum - minPrevious,  maxSum < 0 in previous check

b. sum - minPrevious < 0 if maxSum < sum -minPrevious < 0

c. sum - minPrevious > 0 if maxSum < 0 < sum - minPrevious

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0; for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
}
if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
if(sum >= minPreviousSum ) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
} }

Idea 3. There is a O(n) solution listed on this paper section 3 (To read maybe)
https://arxiv.org/pdf/cs/0311020.pdf

Maximum Average Subarray II LT644的更多相关文章

  1. leetcode644. Maximum Average Subarray II

    leetcode644. Maximum Average Subarray II 题意: 给定由n个整数组成的数组,找到长度大于或等于k的连续子阵列,其具有最大平均值.您需要输出最大平均值. 思路: ...

  2. [LeetCode] Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  3. [LeetCode] 644. Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  4. Maximum Average Subarray II

    Description Given an array with positive and negative numbers, find the maximum average subarray whi ...

  5. LC 644. Maximum Average Subarray II 【lock,hard】

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  6. 643. Maximum Average Subarray I 最大子数组的平均值

    [抄题]: Given an array consisting of n integers, find the contiguous subarray of given length k that h ...

  7. LeetCode 643. 子数组最大平均数 I(Maximum Average Subarray I)

    643. 子数组最大平均数 I 643. Maximum Average Subarray I 题目描述 给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. LeetCo ...

  8. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  9. 【Leetcode_easy】643. Maximum Average Subarray I

    problem 643. Maximum Average Subarray I 题意:一定长度的子数组的最大平均值. solution1:计算子数组之后的常用方法是建立累加数组,然后再计算任意一定长度 ...

随机推荐

  1. tomcat中的类加载机制

    Tomcat中的类加载机制符合JVM推荐的双亲委派模型,关于JVM的类加载机制不多说,网上很多资料. 1. Tomcat类加载器过程. tomcat启动初始化阶段创建几个类加载器: private v ...

  2. SVN Commit:将本地代码更新到服务器代码

    1.点击客户端“TortoiseSVN” 选中后显示: 点击Import: 点击“ok”:

  3. SQLServer 学习笔记 序

    邀月的博客 http://www.cnblogs.com/downmoon/archive/2011/03/10/1980172.html

  4. backdoor-factory

    启动backdoor-factory 寻找大于100字节的代码洞 执行的结果 查看适合的payload程序 iat_reverse_tcp_stager_threaded分片段注入方式 使用这种注入方 ...

  5. 使用fckeditor上传多张图片

    流程: 1.使用fck上传图片到后台 2.后台上传图片到服务器端 3.服务器端返回上传信息 1.jsp页面 <script type="text/javascript"> ...

  6. 【C++】正则表达式引擎学习心得

    最近参照一些资料实现了一个非常简易的正则表达式引擎,支持基本的正则语法 | + * ()等. 实现思路是最基本的:正则式->AST->NFA->DFA. 以下是具体步骤: 一. 正则 ...

  7. centos如何查看磁盘剩余空间

    linux系统的Df命令是以磁盘分区为单位查看文件系统,可以加上参数查看磁盘剩余空间信息,命令格式: df -hl 显示格式为: 文件系统 容量 已用 可用 已用% 挂载点 /dev/hda5 487 ...

  8. 贪吃蛇Controller Java实现(二)

    package cn.tcc.snake.Controller; import java.awt.Point;import java.awt.event.KeyAdapter;import java. ...

  9. Jenkins安装部署(一)

    环境准备 CentOS Linux release 7.4 1.IP:192.168.43.129 2.路径:/mnt 3.jdk版本:jdk1.8.0 4.tomcat版本:tomcat-8.5 5 ...

  10. http://www.bugku.com:Bugku——Easy_vb

      之前复习了汇编等知识,这是人生中第一个逆向题目,嘻嘻.   启程.   对于执行文件,首先需要看它是32位还是64位的.这里了解到静态工具IDA的启动程序为idaq.exe和idaq64.exe( ...