Given an array consisting of n integers, find the contiguous subarray whose length is greater than or equal to k that has the maximum average value. And you need to output the maximum average value.

Example 1:

Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation:
when length is 5, maximum average value is 10.8,
when length is 6, maximum average value is 9.16667.
Thus return 12.75.

Note:

  1. 1 <= k <= n <= 10,000.
  2. Elements of the given array will be in range [-10,000, 10,000].
  3. The answer with the calculation error less than 10-5 will be accepted.

Idea 1. Brute force, use the idea on maximum subarray(Leetcode 53), for any pairs (i, j), j - i >= k-1, 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far.

Time complexity: O(n2)

Space complexity: O(1)

public class Solution {
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = 0; i < nums.length; ++i) {
double sum = 0;
for(int j = i; j < nums.length; ++j) {
sum += nums[j];
if(j-i + 1 >= k) {
maxAverage = Math.max(maxAverage, sum/(j-i+1));
}
}
} return maxAverage;
}
}

Idea 1.a Brute force, use the idea on Maximum Average Subarray I (Leetcode 643). Linearly find all the maximum average subarray for subarray length >= k.

public class Solution {
public double findMaxAverageWithLengthK(int[] nums, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums[i];
} double maxSum = sum;
for(int i = k; i < nums.length; ++i) {
sum = sum + nums[i] - nums[i-k];
maxSum = Math.max(maxSum, sum);
} return maxSum/k;
}
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = k; i < nums.length; ++i) {
double average = findMaxAverageWithLengthK(nums, i);
maxAverage = Math.max(maxAverage, average);
} return maxAverage;
}
}

Idea 2. Smart idea, use two techniques

1. Use binary search to guess the maxAverage, minValue in the array <= maxAverage <= maxValue in the array, assumed the guesed maxAverage is mid, if there exists a subarray with length >= k whos average is bigger than mid, then the maxAverage must be located between [mid, maxValue], otherwise between [minValue, mid].

2. How to efficiently check if there exists a subarray with length >= k whos average is bigger than mid? do you still remember the cumulative sum in maximum subArray? maximum sum subarray with length >= k can be computed by cumu[j] - min(cumu[i]) where j - i + 1 >= 0. If we deduct each element with mid (nums[i] -mid), the problem is transfered to find if there exists a subarray whoes sum >= 0. Since this is not strictly to find the maxSum, in better case if any subarray's sum >= 0, we terminate the search early and return true; in worst case we search all the subarray and find the maxmum sum, then check if maxSum >= 0.

Time complexity: O(nlogn)

Space complexity: O(1)

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
} if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
double maxSum = -Double.MAX_VALUE;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
maxSum = Math.max(maxSum, sum - minPreviousSum);
if (maxSum >= 0) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
}
}

We can reduce one variable, maxSum, terminate if sum - minPrevious >= 0, sum - minPreviousSum is the maxSum ended at current index.

a. sum - minPrevious < 0 if maxSum > sum - minPrevious,  maxSum < 0 in previous check

b. sum - minPrevious < 0 if maxSum < sum -minPrevious < 0

c. sum - minPrevious > 0 if maxSum < 0 < sum - minPrevious

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0; for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
}
if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
if(sum >= minPreviousSum ) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
} }

Idea 3. There is a O(n) solution listed on this paper section 3 (To read maybe)
https://arxiv.org/pdf/cs/0311020.pdf

Maximum Average Subarray II LT644的更多相关文章

  1. leetcode644. Maximum Average Subarray II

    leetcode644. Maximum Average Subarray II 题意: 给定由n个整数组成的数组,找到长度大于或等于k的连续子阵列,其具有最大平均值.您需要输出最大平均值. 思路: ...

  2. [LeetCode] Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  3. [LeetCode] 644. Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  4. Maximum Average Subarray II

    Description Given an array with positive and negative numbers, find the maximum average subarray whi ...

  5. LC 644. Maximum Average Subarray II 【lock,hard】

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  6. 643. Maximum Average Subarray I 最大子数组的平均值

    [抄题]: Given an array consisting of n integers, find the contiguous subarray of given length k that h ...

  7. LeetCode 643. 子数组最大平均数 I(Maximum Average Subarray I)

    643. 子数组最大平均数 I 643. Maximum Average Subarray I 题目描述 给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. LeetCo ...

  8. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  9. 【Leetcode_easy】643. Maximum Average Subarray I

    problem 643. Maximum Average Subarray I 题意:一定长度的子数组的最大平均值. solution1:计算子数组之后的常用方法是建立累加数组,然后再计算任意一定长度 ...

随机推荐

  1. appium自动化测试之UIautomatorviewer元素定位

    appium自动化测试之UIautomatorviewer元素定位 标签(空格分隔): uiautomatorviewer元素定位 前面的章节,已经总结了怎么搭建环境,怎样成功启动一个APP了,这里具 ...

  2. Oracle数据导出导入

    总结了几种Oracle导入导出的命令方法,方便以后使用.      数据导出: 1. 将数据库test完全导出,用户名system 密码manager 导出到d:/daochu.dmp中        ...

  3. js setInterval参数设置

    语法  setInterval(code,interval) ①可以有第三个参数,第三个参数作为第一个参数(函数)的参数 ②第一个参数是函数,有三种形式: 1.传函数名,不用加引号,也不加括号,如 s ...

  4. ELK Deployed

    Enviroment prepare rpm -qa | grep java wget http://download.oracle.com/otn-pub/java/jdk/8u171-b11/51 ...

  5. UVA-816.Abbott's Tevenge (BFS + 打印路径)

    本题大意:给定一个迷宫,让你判断是否能从给定的起点到达给定的终点,这里起点需要输入起始方向,迷宫的每个顶点也都有行走限制,每个顶点都有特殊的转向约束...具体看题目便知... 本题思路:保存起点和终点 ...

  6. vcenter或workstation12导入ovf出错:硬件系列vmx 14不受支持

    原因是因为导出ovf的虚拟机版本太高. 两个方法,一个强制,一个推荐. 强制 1. 打开ovf后缀文件,把<vssd:VirtualSystemType>vmx-14</vssd:V ...

  7. bbs项目中的零碎点记录

    一.切换django的语言 在settings中修改django默认的语言 # LANGUAGE_CODE = 'en-us' # 切换django的语言,默认是英语的,我们把他修改为中文 LANGU ...

  8. java 线程Thread 技术--1.5Lock 与condition 演示生产者与消费模式

    在jdk 1.5 后,Java 引入了lock 锁来替代synchronized ,在使用中,lock锁的使用更加灵活,提供了灵活的 api ,不像传统的synchronized ,一旦进入synch ...

  9. java 线程Thread 技术--线程方法详解

    Thread 类常用的方法与Object类提供的线程操作方法:(一个对象只有一把锁

  10. day 12 内置函数,装饰器,递归函数

    内置函数 内置函数:python给咱们提供了一些他认为你会经常用到的函数,68种      内置函数     abs() dict() help() min() setattr() all()  di ...