Given an array consisting of n integers, find the contiguous subarray whose length is greater than or equal to k that has the maximum average value. And you need to output the maximum average value.

Example 1:

Input: [1,12,-5,-6,50,3], k = 4
Output: 12.75
Explanation:
when length is 5, maximum average value is 10.8,
when length is 6, maximum average value is 9.16667.
Thus return 12.75.

Note:

  1. 1 <= k <= n <= 10,000.
  2. Elements of the given array will be in range [-10,000, 10,000].
  3. The answer with the calculation error less than 10-5 will be accepted.

Idea 1. Brute force, use the idea on maximum subarray(Leetcode 53), for any pairs (i, j), j - i >= k-1, 0 <= i  <= j < nums.length, check whether the sum of nums[i..j] is greater than the maximum sum so far.

Time complexity: O(n2)

Space complexity: O(1)

public class Solution {
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = 0; i < nums.length; ++i) {
double sum = 0;
for(int j = i; j < nums.length; ++j) {
sum += nums[j];
if(j-i + 1 >= k) {
maxAverage = Math.max(maxAverage, sum/(j-i+1));
}
}
} return maxAverage;
}
}

Idea 1.a Brute force, use the idea on Maximum Average Subarray I (Leetcode 643). Linearly find all the maximum average subarray for subarray length >= k.

public class Solution {
public double findMaxAverageWithLengthK(int[] nums, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums[i];
} double maxSum = sum;
for(int i = k; i < nums.length; ++i) {
sum = sum + nums[i] - nums[i-k];
maxSum = Math.max(maxSum, sum);
} return maxSum/k;
}
public double findMaxAverage(int[] nums, int k) {
double maxAverage = Integer.MIN_VALUE; for(int i = k; i < nums.length; ++i) {
double average = findMaxAverageWithLengthK(nums, i);
maxAverage = Math.max(maxAverage, average);
} return maxAverage;
}
}

Idea 2. Smart idea, use two techniques

1. Use binary search to guess the maxAverage, minValue in the array <= maxAverage <= maxValue in the array, assumed the guesed maxAverage is mid, if there exists a subarray with length >= k whos average is bigger than mid, then the maxAverage must be located between [mid, maxValue], otherwise between [minValue, mid].

2. How to efficiently check if there exists a subarray with length >= k whos average is bigger than mid? do you still remember the cumulative sum in maximum subArray? maximum sum subarray with length >= k can be computed by cumu[j] - min(cumu[i]) where j - i + 1 >= 0. If we deduct each element with mid (nums[i] -mid), the problem is transfered to find if there exists a subarray whoes sum >= 0. Since this is not strictly to find the maxSum, in better case if any subarray's sum >= 0, we terminate the search early and return true; in worst case we search all the subarray and find the maxmum sum, then check if maxSum >= 0.

Time complexity: O(nlogn)

Space complexity: O(1)

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0;
for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
} if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
double maxSum = -Double.MAX_VALUE;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
maxSum = Math.max(maxSum, sum - minPreviousSum);
if (maxSum >= 0) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
}
}

We can reduce one variable, maxSum, terminate if sum - minPrevious >= 0, sum - minPreviousSum is the maxSum ended at current index.

a. sum - minPrevious < 0 if maxSum > sum - minPrevious,  maxSum < 0 in previous check

b. sum - minPrevious < 0 if maxSum < sum -minPrevious < 0

c. sum - minPrevious > 0 if maxSum < 0 < sum - minPrevious

public class Solution {
private boolean containsAverageArray(List<Integer> nums, double targetAverage, int k) {
double sum = 0; for(int i = 0; i < k; ++i) {
sum += nums.get(i) - targetAverage;
}
if(sum >= 0) return true; double previousSum = 0;
double minPreviousSum = 0;
for(int i = k; i < nums.size(); ++i) {
sum += nums.get(i) - targetAverage;
previousSum += nums.get(i-k) - targetAverage;
minPreviousSum = Math.min(minPreviousSum, previousSum);
if(sum >= minPreviousSum ) {
return true;
}
} return false;
} public double findMaxAverage(List<Integer> nums, int k) { double minItem = Collections.min(nums);
double maxItem = Collections.max(nums); while(maxItem - minItem >= 1e-5 ) {
double mid = minItem + (maxItem - minItem)/2.0; boolean contains = containsAverageArray(nums, mid, k);
if (contains) {
minItem = mid;
}
else {
maxItem = mid;
} } return maxItem;
} }

Idea 3. There is a O(n) solution listed on this paper section 3 (To read maybe)
https://arxiv.org/pdf/cs/0311020.pdf

Maximum Average Subarray II LT644的更多相关文章

  1. leetcode644. Maximum Average Subarray II

    leetcode644. Maximum Average Subarray II 题意: 给定由n个整数组成的数组,找到长度大于或等于k的连续子阵列,其具有最大平均值.您需要输出最大平均值. 思路: ...

  2. [LeetCode] Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  3. [LeetCode] 644. Maximum Average Subarray II 子数组的最大平均值之二

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  4. Maximum Average Subarray II

    Description Given an array with positive and negative numbers, find the maximum average subarray whi ...

  5. LC 644. Maximum Average Subarray II 【lock,hard】

    Given an array consisting of n integers, find the contiguous subarray whose length is greater than o ...

  6. 643. Maximum Average Subarray I 最大子数组的平均值

    [抄题]: Given an array consisting of n integers, find the contiguous subarray of given length k that h ...

  7. LeetCode 643. 子数组最大平均数 I(Maximum Average Subarray I)

    643. 子数组最大平均数 I 643. Maximum Average Subarray I 题目描述 给定 n 个整数,找出平均数最大且长度为 k 的连续子数组,并输出该最大平均数. LeetCo ...

  8. Maximum Average Subarray

    Given an array with positive and negative numbers, find the maximum average subarray which length sh ...

  9. 【Leetcode_easy】643. Maximum Average Subarray I

    problem 643. Maximum Average Subarray I 题意:一定长度的子数组的最大平均值. solution1:计算子数组之后的常用方法是建立累加数组,然后再计算任意一定长度 ...

随机推荐

  1. ssm 连接两个数据库

    <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...

  2. oracle 简单输出语句与赋值

    输出: declare stuName varchar2(30); stuAge number; begin stuName:='jack'; stuAge:=30; dbms_output.put_ ...

  3. 机器人编程挑战python

    机器人编程挑战 要使用pip安装模拟器,请运行pip install zombiedice(在Windows上)或pip3 install zombiedice(在macOS和Linux上).要使用一 ...

  4. Nginx 到底可以做什么

    本文只针对Nginx在不加载第三方模块的情况能处理哪些事情,由于第三方模块太多所以也介绍不完,当然本文本身也可能介绍的不完整,毕竟只是我个人使用过和了解到过得,欢迎留言交流. Nginx能做什么 反向 ...

  5. python 读取文件第一列 空格隔开的数据

    file=open('6230hand.log','r') result=list() for c in file.readlines(): c_array=c.split(" " ...

  6. PAT1135(红黑书的判定)

    There is a kind of balanced binary search tree named red-black tree in the data structure. It has th ...

  7. PTA 7-6 列出连通集(深搜+广搜)

    给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集.假设顶点从0到N−1编号.进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点. 输入格式: 输入第1 ...

  8. f5备份与还原

    1.需备份主机和备机的配置 2.1)备份到f5 恢复: 2)备份到本地

  9. day 27 Python中进程的操作

    进程的创建和结束: multiprocess模块: multiprocess不是一个模块而是python中一个操作.管理进程的包 分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享 ...

  10. 我的第一个博客——Fragment遇到的问题

    最近项目中使用fragment时遇到了一些问题: 1.fragment的刷新问题. 解决:我的情况是有多个fragment时,只需要刷新其中几个界面.之前我在网上看到的一些方法.如下: 首先在Adap ...