Toy Storage

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 5968   Accepted: 3573

Description

Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing with them. They gave Reza a rectangular box to put his toys in. Unfortunately, Reza is rebellious and obeys his parents by simply throwing his toys into the box. All the toys get mixed up, and it is impossible for Reza to find his favorite toys anymore. 
Reza's parents came up with the following idea. They put cardboard partitions into the box. Even if Reza keeps throwing his toys into the box, at least toys that get thrown into different partitions stay separate. The box looks like this from the top: 

We want for each positive integer t, such that there exists a partition with t toys, determine how many partitions have t, toys.

Input

The input consists of a number of cases. The first line consists of six integers n, m, x1, y1, x2, y2. The number of cardboards to form the partitions is n (0 < n <= 1000) and the number of toys is given in m (0 < m <= 1000). The coordinates of the upper-left corner and the lower-right corner of the box are (x1, y1) and (x2, y2), respectively. The following n lines each consists of two integers Ui Li, indicating that the ends of the ith cardboard is at the coordinates (Ui, y1) and (Li, y2). You may assume that the cardboards do not intersect with each other. The next m lines each consists of two integers Xi Yi specifying where the ith toy has landed in the box. You may assume that no toy will land on a cardboard.

A line consisting of a single 0 terminates the input.

Output

For each box, first provide a header stating "Box" on a line of its own. After that, there will be one line of output per count (t > 0) of toys in a partition. The value t will be followed by a colon and a space, followed the number of partitions containing t toys. Output will be sorted in ascending order of t for each box.

Sample Input

4 10 0 10 100 0
20 20
80 80
60 60
40 40
5 10
15 10
95 10
25 10
65 10
75 10
35 10
45 10
55 10
85 10
5 6 0 10 60 0
4 3
15 30
3 1
6 8
10 10
2 1
2 8
1 5
5 5
40 10
7 9
0

Sample Output

Box
2: 5
Box
1: 4
2: 1

Source

 
与A题相同,但是线没有排序,询问的是有t个玩具的区域有几个
 //2017-08-30
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int N = ; struct Point{
int x, y;
Point(){}
Point(int _x, int _y):x(_x), y(_y){}
//a-b 表示向量 ba
Point operator- (const Point &b) const {
return Point(x-b.x, y-b.y);
}
//向量叉积
int operator* (const Point &b) const {
return x*b.y - y*b.x;
}
}A, B; int ans[N], U[N], L[N], t[N];
int n, m; bool check(int id, int x, int y){
if(y == A.y)return x > U[id];
if(y == B.y)return x > L[id];
Point a(L[id], B.y);
Point b(U[id], A.y);
Point c(x, y);
//令I = 向量ab 叉乘 向量 bc,若I为正,点c在向量ab的左侧(沿向量方向看);为负则在右侧
return ((c-a)*(b-a)) > ;
} int get_position(int x, int y){
int l = , r = n+, mid, ans;
while(l <= r){
mid = (l+r)>>;
if(check(mid, x, y)){
ans = mid;
l = mid+;
}else r = mid-;
}
return ans;
} int main()
{
std::ios::sync_with_stdio(false);
freopen("inputB.txt", "r", stdin);
while(cin>>n && n){
cin>>m>>A.x>>A.y>>B.x>>B.y;
U[] = L[] = A.x;
U[n+] = L[n+] = B.x;
for(int i = ; i <= n; i++)
cin>>U[i]>>L[i];
memset(ans, , sizeof(ans));
sort(U, U+n+);
sort(L, L+n+);
int x, y;
for(int i = ; i < m; i++){
cin>>x>>y;
ans[get_position(x, y)]++;
}
memset(t, , sizeof(t));
for(int i = ; i <= n; i++)
t[ans[i]]++;
cout<<"Box"<<endl;
for(int i = ; i <= m; i++)
if(t[i])
cout<<i<<": "<<t[i]<<endl;
} return ;
}

POJ2398(KB13-B 计算几何)的更多相关文章

  1. poj2398 Toy Storage 计算几何,叉积,二分

    poj2398 Toy Storage 链接 poj 题目大意 这道题的大概意思是先输入6个数字:n,m,x1,y1,x2,y2.n代表卡片的数量,卡片竖直(或倾斜)放置在盒内,可把盒子分为n+1块区 ...

  2. [POJ2398]Toy Storage(计算几何,二分,判断点在线段的哪一侧)

    题目链接:http://poj.org/problem?id=2398 思路RT,和POJ2318一样,就是需要排序,输出也不一样.手工画一下就明白了.注意叉乘的时候a×b是判断a在b的顺时针还是逆时 ...

  3. poj2398计算几何叉积

    Mom and dad have a problem: their child, Reza, never puts his toys away when he is finished playing ...

  4. ACM/ICPC 之 计算几何入门-叉积-to left test(POJ2318-POJ2398)

    POJ2318 本题需要运用to left test不断判断点处于哪个分区,并统计分区的点个数(保证点不在边界和界外),用来做叉积入门题很合适 //计算几何-叉积入门题 //Time:157Ms Me ...

  5. HDU 2202 计算几何

    最大三角形 Time Limit: 5000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  6. ACM 计算几何中的精度问题(转)

    http://www.cnblogs.com/acsmile/archive/2011/05/09/2040918.html 计算几何头疼的地方一般在于代码量大和精度问题,代码量问题只要平时注意积累模 ...

  7. hdu 2393:Higher Math(计算几何,水题)

    Higher Math Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  8. sdut 2603:Rescue The Princess(第四届山东省省赛原题,计算几何,向量旋转 + 向量交点)

    Rescue The Princess Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Several days ago, a b ...

  9. [知识点]计算几何I——基础知识与多边形面积

    // 此博文为迁移而来,写于2015年4月9日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102vxaq.html 1.前言 ...

随机推荐

  1. InfluxDB Java入门

    添加依赖 <dependency> <groupId>org.influxdb</groupId> <artifactId>influxdb-java& ...

  2. git log 高级用法

    转自:https://github.com/geeeeeeeeek/git-recipes/wiki/5.3-Git-log%E9%AB%98%E7%BA%A7%E7%94%A8%E6%B3%95 内 ...

  3. python--使用pickle序列化对象

    pickle序列化对象 如果希望透明地存储 Python 对象,而不丢失其身份和类型等信息,则需要某种形式的对象序列化:它是一个将任意复杂的对象转成对象的文本或二进制表示的过程. 同样,必须能够将对象 ...

  4. jQuery Mobile Api

        jQuery Mobile提供了使用Javascript与框架(html5)通信以及进行内容管理的API.下面介绍具体事件. 文档事件     mobileinit事件会在jQuery Mob ...

  5. asp.net core 系列之用户认证(1)-给项目添加 Identity

    对于没有包含认证(authentication),的项目,你可以使用基架(scaffolder)把 Identity的程序集包加入到项目中,并且选择性的添加Identity的代码进行生成. 虽然基架已 ...

  6. android 回调函数使用简介

    //1---定义回调函数 public interface GirdMenuStateListener { void onSuccess(); void onError(); } //2---使用的地 ...

  7. 02-05:springboot文件的上传

    1.在static 下建立upload.html文件 <!DOCTYPE html> <html> <head> <meta charset="UT ...

  8. 使用Xutils 3 中遇到的一些问题!!!!

    1.当xml页面中有可见的,同时设置id的控件时,如果在Activity中没有使用注解进行反射该控件,app会crash,提示:  Caused by: java.lang.NullPointerEx ...

  9. Windows下的Jdk 1.7*安装并配置(图文详解)

    不多说,直接上干货! 很多人很少去想,为什么在windows下,安装完Jdk的安装包之后,还需要去配置环境变量,只是知道要这么去做,没有想过为什么要去这么做? 答:由于java是平台无关的 ,安装jd ...

  10. AR介绍

    AR介绍 AR全名扩增实境,是一种实时融合现实与虚拟的图像技术. AR技术的三板斧:感知(寻找目标定位位置-与环境交互),渲染(实现产品交互-与客户交互),追踪(捕捉目标运动轨迹-客户环境上下文). ...