1047B_Cover Points
1 second
256 megabytes
standard input
standard output
There are nn points on the plane, (x1,y1),(x2,y2),…,(xn,yn)(x1,y1),(x2,y2),…,(xn,yn).
You need to place an isosceles triangle with two sides on the coordinate axis to cover all points (a point is covered if it lies inside the triangle or on the side of the triangle). Calculate the minimum length of the shorter side of the triangle.
First line contains one integer nn (1≤n≤1051≤n≤105).
Each of the next nn lines contains two integers xixi and yiyi (1≤xi,yi≤1091≤xi,yi≤109).
Print the minimum length of the shorter side of the triangle. It can be proved that it's always an integer.
3
1 1
1 2
2 1
3
4
1 1
1 2
2 1
2 2
4
Illustration for the first example:
Illustration for the second example:
题意:唔就是,让你找到一个最小的等腰三角形,使得给出的所有点都包含在等腰三角形里或者等腰三角形边上
分析: 其实就是找给出的点在y轴上截距最大的时候,满足方程y=-x+b,移一下就是,x+y=b,只要找到x+y的最大值即可、
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int main()
{
int n;
while(~scanf("%d",&n))
{
int a,b,ans=;
while(n--)
{
scanf("%d %d",&a,&b);
ans=max(a+b,ans);
}
printf("%d\n",ans);
}
return ;
}
1047B_Cover Points的更多相关文章
- 有理数的稠密性(The rational points are dense on the number axis.)
每一个实数都能用有理数去逼近到任意精确的程度,这就是有理数的稠密性.The rational points are dense on the number axis.
- [LeetCode] Max Points on a Line 共线点个数
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- LeetCode:Max Points on a Line
题目链接 Given n points on a 2D plane, find the maximum number of points that lie on the same straight l ...
- K closest points
Find the K closest points to a target point in a 2D plane. class Point { public int x; public int y; ...
- 【leetcode】Max Points on a Line
Max Points on a Line 题目描述: Given n points on a 2D plane, find the maximum number of points that lie ...
- Max Points on a Line
Given n points on a 2D plane, find the maximum number of points that lie on the same straight line. ...
- [LeetCode OJ] Max Points on a Line
Max Points on a Line Submission Details 27 / 27 test cases passed. Status: Accepted Runtime: 472 ms ...
- [UCSD白板题] Points and Segments
Problem Introduction The goal in this problem is given a set of segments on a line and a set of poin ...
- [UCSD白板题] Covering Segments by Points
Problem Introduction You are given a set of segments on a line and your goal is to mark as few point ...
随机推荐
- seo优化之域名泛解析优缺点分析
原文地址:http://www.phpddt.com/web/analysis-of-domain-name.html 自己也算半个SEOER,虽然没从事过优化工作,由于自己很感兴趣,每天还是会去看很 ...
- dubbo项目部署遇到的问题
部署的项目结构如下: [图片] 1 Socket >>>相关的报错 检查下zookeeper的服务端cmd和客户端cmd是否起来了 2 jdbc.DataSourceProperti ...
- [UE4]Canvas Panel应用小技巧
当设置为满屏拉伸的时候,只要把“偏移左侧”和“偏移底部”都设置为0,就会自动拉伸为整屏了.再也不需要手动担心拉不满屏了.
- jqgrid使用(1)生成表格
1.引入js,css 2,基本配置 function init() { $("#list1").jqGrid({ url: "../Listing.ashx", ...
- Unity中进程间通信——使用异步Socket
开发Unity项目过程中,即时通信功能来完成服务器与客户端自定义的数据结构封装. 如果要序列化和数据封装参考:Unity3D之C#用Socket传数据包 蓝鸥3G封装的类 客户端脚本ClientScr ...
- JavaWeb项目中web.xml有关servlet的基本配置
JavaWeb项目中web.xml有关servlet的基本配置: 我们注意到,tomcat下的conf中也有一个web.xml文件,没错的,所有的JavaWeb项目中web.xml都继承自服务器下的w ...
- CS229 1 .线性回归与特征归一化(feature scaling)
线性回归是一种回归分析技术,回归分析本质上就是一个函数估计的问题(函数估计包括参数估计和非参数估计),就是找出因变量和自变量之间的因果关系.回归分析的因变量是应该是连续变量,若因变量为离散变量,则问题 ...
- Codeforces Round #492 (Div. 2)
A. /* 从大往小依次除 */ #include<cstdio> #include<algorithm> #include<cstring> #include&l ...
- 常见sql注入的防范总结
在平时的开发过程中,我们可能很少会刻意的去为项目做一个sql注入的防范,这是因为你可能因为使用了某些框架,而无意间已经有了对应sql注入的一些防范操作(比如mybatis使用#{XX}传参,属于预编译 ...
- rpm和yum的区别
rpm 只能安装已经下载到本地机器上的rpm 包, yum能在线下载并安装rpm包,能更新系统,且还能自动处理包与包之间的依赖问题,这个是rpm 工具所不具备的.