简单prufer应用
【bzoj1005】
Description
自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在
任意两点间连线,可产生多少棵度数满足要求的树?
Input
第一行为N(0 < N < = 1000),
接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1
Output
一个整数,表示不同的满足要求的树的个数,无解输出0
Sample Input
1
-1
-1
Sample Output
关于prufer序列这个定理的证明,
给出大佬博客http://hzwer.com/3272.html
我这里就给一个结论

写到代码里,OK!
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define il inline
#define re register
using namespace std;
const int N=;
int n,m,p,d[N],ans[N],chk[N],pr[N],cnt[N],tot,l;
il void filt(){
for(int i=;i<=;i++) if(!chk[i]){
pr[++tot]=i;
for(int j=i+i;j<=;j+=i)
chk[j]=;
}
}
il void add(int p,int v){
// cout<<p<<"...\n";
for(int k=;k<=p;k++){
int x=k;
for(int i=;i<=tot;i++){
if(x<=) break;
while(x%pr[i]==){
cnt[i]+=v;x/=pr[i];
}
}
}
}
il void mul(int x){
// cout<<x<<endl;
for(int i=;i<=l;i++)
ans[i]*=x;
for(int i=;i<=l;i++){
ans[i+]+=ans[i]/;
ans[i]%=;
}
while(ans[l+]>){
l++;
ans[l+]+=ans[l]/;
ans[l]%=;
}
}
int main(){
filt();
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&d[i]);
}
if(n==){
if(!d[]) cout<<'';
else cout<<'';
return ;
}
for(int i=;i<=n;i++){
if(!d[i]){
printf("");
return ;
}
if(d[i]==-) m++;
else{
d[i]--;p+=d[i];
}
}
if(p>n-){
printf("");
return ;
}
add(n-,);
add(n--p,-);
for(int i=;i<=n;i++)
if(d[i]>) add(d[i],-);
ans[]=;l=;
/* for(int i=1;i<=tot;i++)
cout<<cnt[i]<<' ';
cout<<endl;*/
for(int i=;i<=tot;i++){
for(;cnt[i];cnt[i]--)
mul(pr[i]);
}
// cout<<m<<endl;
for(int i=;i<=n--p;i++)
mul(m);
printf("%d",ans[l]);
for(int i=l-;i>=;i--)
printf("%06d",ans[i]);
return ;
}
【bzoj1430】
Description
Input
Output
Sample Input
Sample Output
HINT
50%的数据N<=10^3。
100%的数据N<=10^6。
【soltuion】
这不是刚刚那题的弱弱弱化版?
#include<stdio.h>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<math.h>
#include<algorithm>
#include<iostream>
#include<set>
#include<vector>
#include<queue>
#include<map>
#define il inline
#define re register
#define mod 9999991
using namespace std;
typedef long long ll;
int n,ans=;
int main(){
scanf("%d",&n);
for(int i=;i<=n-;i++)
ans=(ll)ans*n%mod;
for(int i=;i<n;i++)
ans=(ll)ans*i%mod;
cout<<ans;
return ;
}
我不会告诉你这篇博客只是一个刷题记录
简单prufer应用的更多相关文章
- ural 1069. Prufer Code
1069. Prufer Code Time limit: 0.25 secondMemory limit: 8 MB A tree (i.e. a connected graph without c ...
- 树的Prufer 编码和最小生成树计数
Prufer数列 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它可以通过简单的迭代方 ...
- prufer序列
介绍 其实是\(pr\ddot{u}fer\)序列 什么是prufer序列? 我们认为度数为\(1\)的点是叶子节点 有一颗无根树,每次选出编号最小的叶子节点,加到当前prufer序列的后面,然后删掉 ...
- prufer数列
涨姿势---prufer数列 一. 简介 Prufer数列是无根树的一种数列.在组合数学中,Prufer数列由有一个对于顶点标过号的树转化来的数列,点数为n的树转化来的Prufer数列长度为n-2.它 ...
- Prufer codes与Generalized Cayley's Formula
Prufer序列 在一棵n个节点带标号树中,我们认为度数为1的点为叶子.n个点的树的Prufer序列是经过下面流程得到的一个长度为n-2的序列. 1.若当前树中只剩下两个点,退出,否则执行2. 2.找 ...
- 【专题】计数问题(排列组合,容斥原理,Prufer序列)
[容斥原理] 对于统计指定排列方案数的问题,一个方案是空间中的一个元素. 定义集合x是满足排列中第x个数的限定条件的方案集合,设排列长度为S,则一共S个集合. 容斥原理的本质是考虑[集合交 或 集合交 ...
- OI图论 简单学习笔记
网络流另开了一个专题,所以在这里就不详细叙述了. 图 一般表示为\(G=(V,E)\),V表示点集,E表示边集 定义图G为简单图,当且仅当图G没有重边和自环. 对于图G=(V,E)和图G2=(V2,E ...
- [HNOI2004]树的计数 prufer数列
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d( ...
- 图论:Prufer编码
BZOJ1211:使用prufer编码解决限定结点度数的树的计数问题 首先学习一下prufer编码是干什么用的 prufer编码可以与无根树形成一一对应的关系 一种无根树就对应了一种prufer编码 ...
随机推荐
- 2017-2018-2 20155229《网络对抗技术》Exp1:逆向及Bof基础实践
逆向及Bof基础实践 实践基础知识 管道命令: 能够将一个命令的执行结果经过筛选,只保留需要的信息. cut:选取指定列. 按指定字符分隔:只显示第n 列的数据 cut -d '分隔符' -f n 选 ...
- 20155232《网络对抗》Exp5 MSF基础应用
20155232<网络对抗>Exp5 MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit:就是利用可能存在的漏洞对目标进行攻击 ...
- [BZOJ3123][Sdoi2013]森林 主席树+启发式合并
3123: [Sdoi2013]森林 Time Limit: 20 Sec Memory Limit: 512 MB Description Input 第一行包含一个正整数testcase,表示当 ...
- CODE[VS] 1159 最大全0子矩阵
写一道CODEVS的题目 其实我还是很喜欢CODEVS的界面的 主要是系统地学习一下悬线法这个看似十分简单,实际就是十分简单的算法 对于一些详细的东西参考dalao's blog,不喜勿喷 对于悬线法 ...
- P3426 [POI2005]SZA-Template
P3426 [POI2005]SZA-Template 链接 分析: 首先T一定是S的一个前缀,也是一个后缀. 判断一个前缀s[1...i]是不是满足条件,那么求出s[1...i]在s中出现的所有位置 ...
- JAVA 文件读取写入后 md5值不变的方法
假如我们想把某文件读入 StringBuffer 并写入新文件,新文件md5值需要保持不变(写入新文件后保证和源文件一模一样), 我们就需要在操作 StringBuffer 时附加换行符: Strin ...
- 转 ssh-keygen 的 详解
为了让两个linux机器之间使用ssh不需要用户名和密码.所以采用了数字签名RSA或者DSA来完成这个操作. 模型分析 假设 A (192.168.20.59)为客户机器,B(192.168.20.6 ...
- 粒子群算法(PSO)算法解析(简略版)
粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...
- Arcengine效率探究之一——属性的读取(转载)
http://blog.csdn.net/lk103852503/article/details/6566652 在写一个对属性表的统计函数时,发现执行速度奇慢无比,百思不得其解,其实算法并不复杂,后 ...
- web框架-Struts开始
问题: 为什么有structs 作为一种框架(frameset)可以与传统的mvc进行比较? MVC是一种模式数据处理.显示和数据输入分开,来规范开发,但是却又并不规范.可以这样想:有三家公司,他们对 ...