3027: [Ceoi2004]Sweet

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 71  Solved: 34

Description

John得到了n罐糖果。不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的)。第i个糖果罐里有 mi个糖果。John决定吃掉一些糖果,他想吃掉至少a个糖果,但不超过b个。问题是John 无法确定吃多少个糖果和每种糖果各吃几个。有多少种方法可以做这件事呢?

Input

从标准输入读入每罐糖果的数量,整数a到b 
 
John能够选择的吃掉糖果的方法数(满足以上条件)

Output

把结果输出到标准输出(把答案模 2004 输出)

1<=N<=10,0<=a<=b<=10^7,0<=Mi<=10^6

Sample Input

2 1 3
3
5

Sample Output

9

HINT

(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),(1,1),(1,2),(2,1)

Source

 
【分析】
  就是分成(<=b) - (<= a-1)的。
  然后每个糖果罐容斥,枚举哪些超过了的。
  假设减掉之后剩下最多选x个糖果
  就是$C_{0+n-1}^{n-1}+C_{1+n-1}^{n-1}+C_{2+n-1}^{n-1}+...+C_{x+n-1}^{n-1}$
  求和之后就是$C_{x+n}^{n}$
  但是!!!模数可能没有逆元,又不能n^2预处理。。
  【怎么办呢???
  【又涨姿势。。
  首先都是$C_{x}^{n}$的形式,即$\dfrac{x!}{(x-n )!}/(n!)$
  n!很小,让$mod=Mod*n!$
  计算的时候模mod,最后除以n!,再模Mod。。。
  就可以了。
 
 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Mod 2004
#define Maxm 10000010
#define LL long long int w[],n;
LL mul; int get_c(int x,int y)
{
if(x<y) return ;
LL mod=mul*Mod,ans=;
for(int i=x;i>=x-y+;i--) ans=1LL*ans*i%mod;
return (ans/mul)%Mod;
} int cal(int x)
{
int ans=;
for(int i=;i<(<<n);i++)
{
int ss=,sm=x;
for(int j=;j<=n;j++) if((<<j-)&i)
{
ss++;sm-=w[j]+;
}
if(sm<) continue;
if(ss&) ans-=get_c(sm+n,n);
else ans+=get_c(sm+n,n);
ans%=Mod;
}
return ans;
} int main()
{
int a,b;
scanf("%d%d%d",&n,&a,&b);
mul=;for(int i=;i<=n;i++) mul=mul*i;
for(int i=;i<=n;i++) scanf("%d",&w[i]);
printf("%d\n",((cal(b)-cal(a-))%Mod+Mod)%Mod);
return ;
}

2017-04-25 21:25:39

【BZOJ 3027】 3027: [Ceoi2004]Sweet (容斥原理+组合计数)的更多相关文章

  1. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  2. HDU 4390 Number Sequence (容斥原理+组合计数)

    HDU 4390 题意: 大概就是这样.不翻译了: Given a number sequence b1,b2-bn. Please count how many number sequences a ...

  3. bzoj 3505 [Cqoi2014]数三角形(组合计数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题意] 在n个格子中任选3点构成三角形的方案数. [思路] 任选3点-3点共线 ...

  4. BZOJ 2467: [中山市选2010]生成树 [组合计数]

    2467: [中山市选2010]生成树 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 638  Solved: 453[Submit][Status][ ...

  5. BZOJ 2302: [HAOI2011]Problem c [DP 组合计数]

    2302: [HAOI2011]Problem c Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 648  Solved: 355[Submit][S ...

  6. BZOJ 3162: 独钓寒江雪 树的同构 + 组合 + 计数

    Description Input   Output 求一棵树编号序列不同的方案数: 令 $f[u],g[u]$ 分别表示 $u$ 选/不选 的方案数. 则 $f[u]=\prod_{v\in son ...

  7. BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]

    4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...

  8. 集训队8月9日(组合计数+容斥原理+Mobius函数)

    刷题数:4 今天看了组合计数+容斥原理+Mobius函数,算法竞赛进阶指南169~179页 组合计数 https://www.cnblogs.com/2462478392Lee/p/11328938. ...

  9. bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)

    黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...

随机推荐

  1. Ajax跨域CORS

    在Ajax2.0中多了CORS允许我们跨域,但是其中有着几种的限制:Origin.Methods.Headers.Credentials 1.Origin 当浏览器用Ajax跨域请求的时候,会带上一个 ...

  2. bzoj千题计划205:bzoj3529: [Sdoi2014]数表

    http://www.lydsy.com/JudgeOnline/problem.php?id=3529 有一张n*m的数表,其第i行第j列(1 < =i < =n,1 < =j & ...

  3. [转载]TypeScript 入门指南

    之前有听过,但未使用过,而最近在用nodejs,angularjs做一些前端项目,想到了这个来,正是学习TypeScript的时候,看介绍貌似和coffeescript相似,也JavaScript的转 ...

  4. JavaScript继承详解(五)

    在本章中,我们将分析John Resig关于JavaScript继承的一个实现 - Simple JavaScript Inheritance. John Resig作为jQuery的创始人而声名在外 ...

  5. 20155328 2016-2017-2 《Java程序设计》 第8周学习总结

    20155328 2016-2017-2 <Java程序设计> 第8周学习总结 教材学习内容总结 NIO与NIO2 认识NIO 相对于IO,NIO可以让你设定缓冲区容量,在缓冲区中对感兴趣 ...

  6. mongoDB - 日常操作四

    python 使用 mongodb easy_install pymongo # 安装(python2.+) import pymongo connection=pymongo.Connection( ...

  7. Java NIO 之 Buffer(缓冲区)

    一 Buffer(缓冲区)介绍 Java NIO Buffers用于和NIO Channel交互. 我们从Channel中读取数据到buffers里,从Buffer把数据写入到Channels. Bu ...

  8. 微信小程序实现首页图片多种排版布局!

    先来个效果图: 使用技术主要是flex布局,绝对定位布局,小程序前端页面开发,以及一些样式! 直接贴代码,都有详细注释,熟悉一下,方便以后小程序开发! wxml: <view class='in ...

  9. H5开发APP考题和答案

    { "last_updated": { "$date": 1544276670569 }, "page_count": 1, "a ...

  10. selenium之 chromedriver与chrome版本映射表(更新至v2.34)

    看到网上基本没有最新的chromedriver与chrome的对应关系表,便兴起整理了一份如下,希望对大家有用: chromedriver版本 支持的Chrome版本 v2.34 v61-63 v2. ...