http://www.lydsy.com/JudgeOnline/problem.php?id=3456

题意:求n个点的无向连通图的方案。(n<=130000)

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=130050, fN=N<<2;
const ll mo=1004535809;
ll G[35], nG[35];
int rev[fN];
ll ipow(ll a, int b) { ll x=1; for(; b; b>>=1, (a*=a)%=mo) if(b&1) (x*=a)%=mo; return x; }
void fft(ll *a, int n, int f) {
for(int i=0; i<n; ++i) if(i<rev[i]) swap(a[i], a[rev[i]]);
int now=-1;
for(int m=2; m<=n; m<<=1) {
int mid=m>>1; ++now;
ll wn=G[now]; if(f) wn=nG[now];
for(int i=0; i<n; i+=m) {
ll w=1;
for(int j=0; j<mid; ++j) {
ll u=a[i+j], v=a[i+j+mid]*w%mo;
a[i+j]=(u+v)%mo;
a[i+j+mid]=(u-v+mo)%mo;
(w*=wn)%=mo;
}
}
}
}
ll tmp[fN];
void getinv(ll *A, ll *B, int n) {
if(n==1) { B[0]=ipow(A[0], mo-2); return; }
getinv(A, B, (n+1)>>1);
int len=1, bl=-1, nn=(n<<1)-1;
for(; len<nn; len<<=1, ++bl);
for(int i=1; i<len; ++i) rev[i]=(rev[i>>1]>>1)|(((ll)i&1)<<bl);
for(int i=0; i<n; ++i) tmp[i]=A[i]; for(int i=n; i<len; ++i) tmp[i]=0;
fft(tmp, len, 0); fft(B, len, 0);
for(int i=0; i<len; ++i) B[i]=B[i]*((2-tmp[i]*B[i]%mo+mo)%mo)%mo;
fft(B, len, 1); ll nN=ipow(len, mo-2);
for(int i=0; i<n; ++i) (B[i]*=nN)%=mo; for(int i=n; i<len; ++i) B[i]=0;
}
ll ni[N], p[N], A[fN], B[fN], nA[fN];
int main() {
int n;
scanf("%d", &n);
if(n<=2) { puts("1"); return 0; } int len=1, bl=-1, nn=((n+1)<<1)-1;
for(; len<nn; len<<=1, ++bl);
G[bl]=ipow(3, (mo-1)/len); nG[bl]=ipow(G[bl], mo-2);
for(int i=bl-1; i>=0; --i) G[i]=G[i+1]*G[i+1]%mo, nG[i]=nG[i+1]*nG[i+1]%mo;
ni[1]=1; p[1]=1; p[0]=1;
for(int i=2; i<=n; ++i) ni[i]=((-(mo/i)*ni[mo%i])%mo+mo)%mo;
for(int i=2; i<=n; ++i) p[i]=p[i-1]*ni[i]%mo;
A[0]=1, B[0]=0;
ll last=1, C=1;
for(int i=1; i<=n; ++i) A[i]=last*p[i]%mo, B[i]=last*p[i-1]%mo, last=last*((C<<=1)%=mo)%mo;
getinv(A, nA, n+1);
for(int i=1; i<len; ++i) rev[i]=(rev[i>>1]>>1)|(((ll)i&1)<<bl);
fft(nA, len, 0); fft(B, len, 0);
for(int i=0; i<len; ++i) (B[i]*=nA[i])%=mo;
fft(B, len, 1); ll nN=ipow(len, mo-2);
for(int i=0; i<=n; ++i) (B[i]*=nN)%=mo;
ll pp=1;
for(int i=2; i<=n; ++i) (pp*=(i-1))%=mo, (B[i]*=pp)%=mo;
printf("%lld\n", B[n]);
return 0;
}

  

理论知识请orz:http://picks.logdown.com/posts/189620-inverse-element-of-polynomial

妈呀多项式除法好多地方我都写跪了555调了好久555

fnt就是用原根来替换单位根,条件是显然的,即:$2^k | (mo-1)$, $2^k>=n$,很容易得到$g^{\frac{mo-1}{m}} \pmod { mo }$可以替换fft中的复数根= =

证明就不证啦= =你可以对着算导证= =(很简单的辣= =。可是

fnt如何求逆?其实也很简单辣= =根是$n^{-1}g^{-\frac{mo-1}{m}}$,这个逆矩阵也是同复数根一样的证法

然后各种乱搞就行辣= =

至于多项式求逆,如果想到倍增也是很显然的...一下就能推出来辣= =(不会的就来问我辣= =qq在右边。。欢迎辣

那么回到本题,容易得到

$$f(n) = 2^{\binom{n}{2}} - \sum_{i=1}^{n-1} 2^{\binom{n-i}{2}} \binom{n-1}{i-1} f(i)$$

意义很显然,所有的图减去不连通的图(这里的技巧太牛了,先取出一个点枚举这个点所在的连通块即$f(i)$,而我们可以选择$\binom{n-1}{i-1}$种点与这个点在一个连通块内,然后剩下的就是随便生成图即$2^{\binom{n-i}{2}}$,乘起来就好辣)

其实这里很不好搞的,我们需要强行化简!

发现$f(i), i<n$都在和式里,而移项后偏偏$f(n)$不在!是不是很不爽!于是去跪picks和jry!发现我们只需要左右都乘上一个$(n-1)!^{-1}$就行辣!就能提$f(n)$进和式辣!即:

$$\sum_{i=0}^{n} 2^{\binom{n-i}{2}} (n-i)!^{-1} (i-1)!^{-1} f(i) = 2^{\binom{n}{2}} (n-1)!^{-1}$$

然后容易发现只要设多项式

$$
\begin{align}
A & = 2^{\binom{i}{2}} i!^{-1} x^i \\
B & = (i-1)!^{-1} f(i) x^i \\
C & = 2^{\binom{i}{2}} (i-1)!^{-1} x^i \\
\end{align}
$$

原式就是$AB=C$辣。(后边是我的错误= =本来就是不能放入$A$的= =感谢zrt神犇指出(在这里,为啥不将$(i-1)!^{-1}$放进$A$是有原因的555,一开始我放到了$A$就一直跪跪跪!因为这样的话$A[0]=0$那么模任何多项式$x^i$都没有关于$A$的逆元!!!妈妈压QAQ!

然后就是$B=CA^{-1}$就是裸的除法辣= =对$A$模一下$x^{n+1}$即可

【BZOJ】3456: 城市规划的更多相关文章

  1. [BZOJ 3456]城市规划(cdq分治+FFT)

    [BZOJ 3456]城市规划(cdq分治+FFT) 题面 求有标号n个点无向连通图数目. 分析 设\(f(i)\)表示\(i\)个点组成的无向连通图数量,\(g(i)\)表示\(i\)个点的图的数量 ...

  2. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  3. [BZOJ 3456]城市规划

    Description 题库链接( bzoj 权限题,可以去 cogs 交♂ 题库链接2 求含有 \(n\) 个点有标号的简单无向联通图的个数.方案数对 \(1004535809(479\times ...

  4. BZOJ 3456: 城市规划 与 多项式求逆算法介绍(多项式求逆, dp)

    题面 求有 \(n\) 个点的无向有标号连通图个数 . \((1 \le n \le 1.3 * 10^5)\) 题解 首先考虑 dp ... 直接算可行的方案数 , 容易算重复 . 我们用总方案数减 ...

  5. bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...

  6. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

  7. bzoj 3456 城市规划 —— 分治FFT / 多项式求逆 / 指数型生成函数(多项式求ln)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 首先考虑DP做法,正难则反,考虑所有情况减去不连通的情况: 而不连通的情况就是那个经典 ...

  8. BZOJ 3456 城市规划 ( NTT + 多项式求逆 )

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n< ...

  9. BZOJ 3456 城市规划 (组合计数、DP、FFT)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 著名的多项式练习题,做法也很多,终于切掉了纪念 首先求一波递推式: 令\(F(n ...

  10. BZOJ 3456: 城市规划 [多项式求逆元 DP]

    题意: 求出n个点的简单(无重边无自环)无向连通图数目.方案数mod 1004535809(479 * 2 ^ 21 + 1)即可. n<=130000 DP求方案 g(n) n个点所有图的方案 ...

随机推荐

  1. 【JAVA 文件概述】

    一.概述 使用此类的原因: 该类将文件或者文件夹封装成对象.方便对文件与文件夹的属性信息进行操作.File对象作为参数传递给流的构造函数.要求:使用File类的常用方法. windows平台下,目录分 ...

  2. jQuery函数attr()和prop()的区别

    在jQuery中,attr()函数和prop()函数都用于设置或获取指定的属性,它们的参数和用法也几乎完全相同. 但不得不说的是,这两个函数的用处却并不相同.下面我们来详细介绍这两个函数之间的区别. ...

  3. php判断访问的当前设备是手机还是电脑

    <?php function isMobile(){ $useragent=isset($_SERVER['HTTP_USER_AGENT']) ? $_SERVER['HTTP_USER_AG ...

  4. 初探数位DP-hdu2089

    一开始刷dp就遇到了数位dp,以前程序设计艺术上看过一点,基本没懂,于是趁今天遇到题目,想把它搞会,但就目前状态来看仍然是似懂非懂啊,以后还要反复搞 统计区间[l,r]的满足题意的数的个数,可以转换成 ...

  5. Codeforces Round #212 (Div. 2) D. Fools and Foolproof Roads 并查集+优先队列

    D. Fools and Foolproof Roads   You must have heard all about the Foolland on your Geography lessons. ...

  6. 已解决:Strict Standards: Non-static method cls_image::gd_version() should not be called statically in...

    在安装Ecshop的时候,遇到两个⚠️问题: Strict Standards: Non-static method cls_image::gd_version() should not be cal ...

  7. view和activity的区别

    activity相当于控制部分,view相当于显示部分.两者之间是多对多的关系,所有东西必须用view来显示.  viewGroup继承自view,实现了ViewManager,ViewParent接 ...

  8. 【项目经验】之——Controller向View传值

    我们的ITOO进行了一大部分了,整体上来说还是比较顺利的.昨天进行了一次验收,大体上来说,我们新生这块还是可以的.不仅仅进行了学术上的交流,还进行了需求上的更新.也正是由于这一次,我有了解到了一个新的 ...

  9. matlab报错

    这可能说明..压根就没有这个函数

  10. 看懂UML类图与时序图

    看懂UML类图和时序图 这里不会将UML的各种元素都提到,我只想讲讲类图中各个类之间的关系: 能看懂类图中各个类之间的线条.箭头代表什么意思后,也就足够应对 日常的工作和交流: 同时,我们应该能将类图 ...