以前做过的题目了。。。。补集+DP

       Check the difficulty of problems
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 4091   Accepted: 1811

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms: 
1. All of the teams solve at least one problem. 
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2
0.9 0.9
1 0.9
0 0 0

Sample Output

0.972

Source

POJ Monthly,鲁小石

 #include <iostream>
#include <cstdio>
#include <cstring> using namespace std; int M,T,N;
double a[][][],s[][],p1,pn,solve[][]; int main()
{
while(~scanf("%d%d%d",&M,&T,&N))
{
if((M||T||N)==) break;
for(int i=;i<=T;i++) for(int j=;j<=M;j++) scanf("%lf",&solve[i][j]);
memset(a,,sizeof(a)); memset(s,,sizeof(s));
for(int i=;i<=T;i++)
{
a[i][][]=;
for(int j=;j<=M;j++)
{
a[i][j][]=a[i][j-][]*(-solve[i][j]);
}
}
for(int i=;i<=T;i++)
{
for(int j=;j<=M;j++)
{
for(int k=;k<=j;k++)
{
a[i][j][k]=a[i][j-][k-]*solve[i][j]+a[i][j-][k]*(-solve[i][j]);
}
}
}
for(int i=;i<=T;i++)
{
s[i][]=a[i][M][];
for(int j=;j<=M;j++)
{
s[i][j]=s[i][j-]+a[i][M][j];
}
}
p1=pn=.;
for(int i=;i<=T;i++)
{
p1*=s[i][M]-s[i][];
pn*=s[i][N-]-s[i][];
}
printf("%.3lf\n",p1-pn);
}
return ;
}

POJ 2151 Check the difficulty of problems的更多相关文章

  1. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  2. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  3. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  4. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  5. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  6. POJ 2151 Check the difficulty of problems (概率DP)

    题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 ,求每队至少解出一题且冠军队至少解出N道题的概率. 析:概率DP,dp[i][j][k] 表示第 i 个队伍,前 j 个题,解出 ...

  7. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  8. 【POJ】2151 Check the difficulty of problems

    http://poj.org/problem?id=2151 题意:T个队伍M条题目,给出每个队伍i的每题能ac的概率p[i][j],求所有队伍至少A掉1题且冠军至少A掉N题的概率(T<=100 ...

  9. Check the difficulty of problems(POJ 2151)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5457   ...

随机推荐

  1. 使用PreApplicationStartMethodAttribute

    第一次见到这个东西是在公司的框架里,刚开始还挺郁闷怎么框架的Application_Start里没东西,初始化的那些代码都哪去了,后来通过一些线索找到了PreApplicationStartMetho ...

  2. Spring--PropertyPlaceholderConfigurer

    1. PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是 BeanFactoryPostProcessor接口的一个实现.PropertyPlaceho ...

  3. UpdateSourceTrigger Property in WPF Binding

    介绍 这篇文章我将介绍在WPF和Silverlight中更新绑定源的概念.正如您所知道的,当我们用TwoWay的模式绑定时,任何在目标控件上发生的变化都会影响绑定源的值. 请注意只是在用TwoWay绑 ...

  4. NXP Mifare S50标准IC卡- 访问位(Access Bits) 分析

    Mifare S50 标准IC卡有1K 字节的EEPROM,主要用来存储数据和控制信息.1K 字节的EEPROM分成16 个区,每区又分成4 段,每1段中有16 个字节.每个区的最后一个段叫“尾部&q ...

  5. asp.net ListBox 移除操作的思路

    ArrayList arrRight = new ArrayList(); protected void ImageButton1_Click(object sender, ImageClickEve ...

  6. 2016 年 Python 开发者调查结果

    1.在团队中工作 vs 独立工作 有趣的是,半数的受访者大部分时间在团队中工作,而另外半数的受访者则独立的做项目. 在公司中工作 vs 独立从事自己的项目 大约80%的受访者告诉我们,他们在公司里面工 ...

  7. C风格字符串与C++风格字符串

    C风格字符串与C++风格字符串 C风格字符串:对字符串进行操作的 C 函数定义在头文件<cstring>中: 1. 字符串定义:char* result: 2. 字符串的最后一个字符是nu ...

  8. Hermite Curve

    http://paulbourke.net/miscellaneous/interpolation/ http://fivedots.coe.psu.ac.th/Software.coe/Java%2 ...

  9. onscroll事件的浏览器支持

    window和普通div对象的scroll事件,被全部浏览器支持,其他元素的scroll事件,仅部分浏览器支持,如下图 出处: http://w3help.org/zh-cn/causes/SD901 ...

  10. Python开发【第七篇】:面向对象

    Python之路[第五篇]:面向对象及相关   面向对象基础 基础内容介绍详见一下两篇博文: 面向对象初级篇 面向对象进阶篇 其他相关 一.isinstance(obj, cls) 检查是否obj是否 ...