“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第9章课程讲义下载(PDF)

Summary

  • Ill-conditional system

    • A system of equations is considered to be ill-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a large change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4.001\\ 7.998\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix} 6.989016\\ -1.497254\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a large change in the solution vector.
  • Well-conditional system
    • A system of equations is considered to be well-conditioned if a small change in the coefficient matrix of a small change in the right hand side results in a small change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1} \cdot \begin{bmatrix} 4.001\\ 7.001\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix} 2.003\\ 0.997\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a small change in the solution vector.
  • Norm
    • Just like the determinant, the norm of a matrix is a simple unique scalar number. For a $m\times n$ matrix $[A]$, the row sum norm of $[A]$ is defined as $$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^{n}|a_{ij}|$$ that is, find the sum of the absolute value of the elements pf each row of the matrix $[A]$. The maximum out of the $m$ such values is the row sum norm if the matrix $[A]$.
    • For example, we have the following matrix $$[A] = \begin{bmatrix}10& -3& 5\\ -7& 2.099& -1\\ 0& 6& 5\end{bmatrix}$$ The row sum norm of $[A]$ is $$\|A\|_{\infty} = \max_{1\leq i\leq3} \sum_{j=1}^{3}|a_{ij}|$$ $$=\max[(10+7+0), (3+2.099+6), (5,-1,5)]$$ $$=\max[17, 11.099, 11] =17$$
  • The relationship between the norm and the conditioning of the matrix
    • Example of the ill-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7.999$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}-3.999\\ 4.000\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-5.999\\ 3.000\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.998\end{bmatrix} - \begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}0.001\\ -0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 5.999$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {5.999\over2}=2.9995$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7.999}=1.25\times10^{-4}$$ That is, the small relative change of $1.25\times10^{-4}$ in the right hand side vector norm results in a large relative change in the solution vector norm of $2.9995$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 23993$$
    • Example of the well-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}1.999\\ 1.001\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-0.001\\ 0.001\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.001\end{bmatrix} - \begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}0.001\\ 0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 0.001$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {0.001\over2}=5\times10{-4}$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7} = 1.429 \times 10^{-4}$$ That is, the small relative change of $1.429\times10^{-4}$ in the right hand side vector norm results in a small relative change in the solution vector norm of $5\times10^{-4}$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 3.5$$
  • Properties of Norms
    • $\|A\| \geq 0$
    • $\|kA\| = |k|\|A\|$ where $k$ is a scalar.
    • $\|A+B\|\leq \|A\| + \|B\|$
    • $\|AB\| \leq \|A\|\cdot\|B\|$
    • For a system $AX=B$, we have $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$ and $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$ where $\|A\|\|A^{-1}\|$ is called the \textbf{condition number}, Cond$(A)$.
  • Significant Digits
    • The possible relative error in the solution vector norm is no more then Cond$(A)\times\epsilon$, where $\epsilon$ is the machine epsilon which is $2.220446\times10^{-16}$ or $2^{-52}$ here (obtained by R code .Machine$double.eps on 64-bit PC, more details refer to link1 and link2).
      Hence Cond$(A) \times \epsilon$ should give us the number of significant digits, $m$ that are at least correct in our solution by finding out the largest value of $m$ for which Cond$(A) \times\epsilon$ is less than or equal to $0.5\times 10^{-m}$.
    • How many significant digits can I trust in the solution of the following system of equations? $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ For $$A=\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix}$$ and $$A^{-1}= \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$$ Then $$\|A\|_{\infty}=5,\ \|A^{-1}\|_{\infty}=5\Rightarrow \text{Cond}(A)=\|A\|_{\infty}\|A^{-1}\|_{\infty} = 25$$ Thus $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 25\times\epsilon\leq0.5\times10^{-m}$$ $$\Rightarrow \log(25\times\epsilon) \leq \log(0.5\times10^{-m})$$ $$\Rightarrow m\leq13.95459 $$ That is, 13 digits are at least correct in the solution vector.

Selected Problems

1. What factors does the adequacy of the solution of simultaneous linear equations depend on?

Solution:

The product of condition number Cond$(A)=\|A\|\|A^{-1}\|$ and machine epsilon $\epsilon$.

2. If a system of equations $[A][X]=[B]$ is ill-conditioned, then

A. $\det(A)=0$

B. Cond$(A)=1$

C. Cond$(A)$ is large

D. $\|A\|$ is large

Solution:

If the system is ill-conditioned, then the condition number Cond$(A)=\|A\|\|A^{-1}\|$ is large. The correct answer is C.

3. If Cond$(A)=10^{4}$ and $\epsilon=0.119\times10^{-6}$, then in $[A][X]=[B]$, at least how many significant digits are correct in the solution?

Solution:
$$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 10^{4}\times0.119\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m\leq {\log(0.5)-\log(0.119\times10^{-2})\over \log(10)} = 2.623423$$ Thus at least 2 significant digits are correct in the solution.

4. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3.999\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 4.000\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}5999\\ -2999\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=5997,\ \|A\|=5.999,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {5997 \big/ 2\over 0.002 \big/ 5.999} = 8994001$$ It is a large number. Hence we can conclude that this system is ill-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3999& 2000 \\ 2000& -1000 \end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5.999\times5999=35988 $$ which is also a large number.

5. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 3.001\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2.003\\ 0.997\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=0.003,\ \|A\|=5,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {0.003 \big/ 2\over 0.002 \big/ 5} = 3.75$$ It is a small number. Hence we can conclude that this system is well-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5\times5=25$$ which is also a small number.

6. Prove $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

Solution:

The key point is $\|XY\| \leq \|X\|\|Y\|$. Let $AX=B$, then if $B$ is changed to $B'$, the $X$ is changed to $X'$, such that $$AX'=B'$$ Hence we have $$AX=B,\ AX'=B'$$ $$\Rightarrow \Delta X=X'-X=A^ {-1}B'-A^{-1}B = A^{-1}\Delta B$$ $$\Rightarrow\|\Delta X\|\leq \|A^{-1}\|\|\Delta B\|$$ and $$AX=B\Rightarrow \|B\|=\|AX\| \leq \|A\|\|X\|$$ Multiply the above inequalities and obtain $$\|\Delta X\|\|B\| \leq \|A^{-1}\|\|\Delta B\|\|A\|\|X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

7. Prove $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

Solution:

Similar to the previous question, we have $$AX=B,\ A'X'=B$$ $$\Rightarrow AX=A'X'=(A+\Delta A)(X+\Delta X)=AX+A\Delta X+\Delta AX + \Delta A\Delta X$$ $$\Rightarrow A\Delta X+\Delta AX + \Delta A\Delta X = [0]$$ $$\Rightarrow \Delta A(X+\Delta X)=-A\Delta X $$ $$\Rightarrow \Delta X= -A^{-1}\Delta A(X+\Delta X) \leq \|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow \|A\|\Delta X\leq \|A\|\|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

8. Prove that Cond$(A) \geq 1$.

Solution:
$$\text{Cond}(A) = \|A\|\|A^{-1}\| \geq \|AA^{-1}\| = \|I\|=1$$

9. For $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$ gives $$[A]^{-1} = \begin{bmatrix}-0.1099& -0.2333& 0.2799\\ -0.2999& -0.3332& 0.3999\\ 0.04995& 0.1666& 6.664\times10^{-5}\end{bmatrix}$$ (A) What is the condition number of $[A]$?

(B) How many significant digits can we at least trust in the solution of $[A][X] = B$ if $\epsilon = 0.1192\times10^{-6}$?

Solution:

(A) Cond$(A) = \|A\|\|A^{-1}\| = 17\times1.033 = 17.561$

(B) $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 17.561\times0.1192\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m \leq 5.378145$$ Hence 5 significant digits can be trusted in the solution.

10. Let $$[A] = \begin{bmatrix}1& 2+\delta\\ 2-\delta& 1\end{bmatrix}$$ Based on the row sum norm and given that $\delta\rightarrow0$, $\delta > 0$, what is the condition number of the matrix?

Solution:

Recall that the inverse of the matrix $[M]=\begin{bmatrix}a &b\\ c &d \end{bmatrix}$ is $$\begin{bmatrix}{d\over\det(M)} & {-b\over \det(M)}\\ {-c\over\det(M)} &{a\over\det(M)} \end{bmatrix}$$ where $\det(M) = ad-bc$. Thus we have
$$A^{-1} = \begin{bmatrix}{1\over -3+\delta^2}& -{2+\delta\over -3+\delta^2}\\{-2+\delta\over -3+\delta^2}& {1\over -3+\delta^2}\end{bmatrix}$$ The row sum norms are
$$\|A\| = \max(3+\delta, 3-\delta) = 3+\delta$$ and $$\|A^{-1}\| = \max\left({3+\delta\over 3-\delta^2}, {3-\delta \over 3-\delta^2} \right) = {3+\delta\over 3-\delta^2}$$ Hence $$\text{Cond}(A) = \|A\|\|A^{-1}\| = {(3+\delta)^2\over3-\delta^2}$$

A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. Caffe学习系列(23):如何将别人训练好的model用到自己的数据上

    caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...

  2. Android子线程真的不能更新UI么

    Android单线程模型是这样描述的: Android UI操作并不是线程安全的,并且这些操作必须在UI线程执行 如果在其它线程访问UI线程,Android提供了以下的方式: Activity.run ...

  3. 【活动】写#听云#原创博文 赢取iPhone 6超级大奖

    移动应用的使用量和重要性与日俱增,用户体验的要求也越来越高.与桌面程序相比,移动应用耗电小,速度慢,但手机用户却希望享受到与桌面程序同样的加载速度.那么如何发现移动应用的性能黑洞,优化移动应用性能,这 ...

  4. ModernUI教程:如何从MUI样式中派生自定义样式

    下面的步骤用来说明怎么样去创建一个基于MUI的自定义样式.让我们创建一个字体颜色显示为红色的按钮样式. 可视化显示如下: 因为我们并没有明确生命继承自MUI风格,它还是采用WPF的默认风格.我们需要设 ...

  5. Beta版本冲刺Day4

    会议讨论: 628:由于昨天的考试我们组目前只把项目放到了服务器上,配置Java环境遇到了问题.601:将一些原来的界面进行了修改,修改成了更加美观的外形. 528:进行一些还未完成得到功能,比如查询 ...

  6. 如何使用国内源部署Ceph?

    由于网络方面的原因,Ceph的部署经常受到干扰,通常为了加速部署,基本上大家都是将Ceph的源同步到本地进行安装.根据Ceph中国社区的统计,当前已经有国内的网站定期将Ceph安装源同步,极大的方便了 ...

  7. hdu3572 最大流

    Task Schedule Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  8. Java-开启一个新的线程

    java实现多线程有2种方法:1扩展java.lang.Thread类:2实现java.lang.Runnable接口 下面举个例子,实现Runnable,来实现多线程 public class Do ...

  9. C#-WinForm-菜单和工具栏

    通用属性: Enabled - 指示是否启用该控件. Visiable - 确定该控件是启用还是隐藏的. Checked - 指示组件是否处于选中状态. 点击事件. 工具箱→菜单和工具栏 1.Cont ...

  10. C# JSon转换

    1. 先添加System.Web.Extensions.dll引用   var js = new System.Web.Script.Serialization.JavaScriptSerialize ...