“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第9章课程讲义下载(PDF)

Summary

  • Ill-conditional system

    • A system of equations is considered to be ill-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a large change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4.001\\ 7.998\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix} 6.989016\\ -1.497254\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a large change in the solution vector.
  • Well-conditional system
    • A system of equations is considered to be well-conditioned if a small change in the coefficient matrix of a small change in the right hand side results in a small change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1} \cdot \begin{bmatrix} 4.001\\ 7.001\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix} 2.003\\ 0.997\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a small change in the solution vector.
  • Norm
    • Just like the determinant, the norm of a matrix is a simple unique scalar number. For a $m\times n$ matrix $[A]$, the row sum norm of $[A]$ is defined as $$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^{n}|a_{ij}|$$ that is, find the sum of the absolute value of the elements pf each row of the matrix $[A]$. The maximum out of the $m$ such values is the row sum norm if the matrix $[A]$.
    • For example, we have the following matrix $$[A] = \begin{bmatrix}10& -3& 5\\ -7& 2.099& -1\\ 0& 6& 5\end{bmatrix}$$ The row sum norm of $[A]$ is $$\|A\|_{\infty} = \max_{1\leq i\leq3} \sum_{j=1}^{3}|a_{ij}|$$ $$=\max[(10+7+0), (3+2.099+6), (5,-1,5)]$$ $$=\max[17, 11.099, 11] =17$$
  • The relationship between the norm and the conditioning of the matrix
    • Example of the ill-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7.999$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}-3.999\\ 4.000\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-5.999\\ 3.000\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.998\end{bmatrix} - \begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}0.001\\ -0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 5.999$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {5.999\over2}=2.9995$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7.999}=1.25\times10^{-4}$$ That is, the small relative change of $1.25\times10^{-4}$ in the right hand side vector norm results in a large relative change in the solution vector norm of $2.9995$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 23993$$
    • Example of the well-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}1.999\\ 1.001\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-0.001\\ 0.001\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.001\end{bmatrix} - \begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}0.001\\ 0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 0.001$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {0.001\over2}=5\times10{-4}$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7} = 1.429 \times 10^{-4}$$ That is, the small relative change of $1.429\times10^{-4}$ in the right hand side vector norm results in a small relative change in the solution vector norm of $5\times10^{-4}$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 3.5$$
  • Properties of Norms
    • $\|A\| \geq 0$
    • $\|kA\| = |k|\|A\|$ where $k$ is a scalar.
    • $\|A+B\|\leq \|A\| + \|B\|$
    • $\|AB\| \leq \|A\|\cdot\|B\|$
    • For a system $AX=B$, we have $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$ and $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$ where $\|A\|\|A^{-1}\|$ is called the \textbf{condition number}, Cond$(A)$.
  • Significant Digits
    • The possible relative error in the solution vector norm is no more then Cond$(A)\times\epsilon$, where $\epsilon$ is the machine epsilon which is $2.220446\times10^{-16}$ or $2^{-52}$ here (obtained by R code .Machine$double.eps on 64-bit PC, more details refer to link1 and link2).
      Hence Cond$(A) \times \epsilon$ should give us the number of significant digits, $m$ that are at least correct in our solution by finding out the largest value of $m$ for which Cond$(A) \times\epsilon$ is less than or equal to $0.5\times 10^{-m}$.
    • How many significant digits can I trust in the solution of the following system of equations? $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ For $$A=\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix}$$ and $$A^{-1}= \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$$ Then $$\|A\|_{\infty}=5,\ \|A^{-1}\|_{\infty}=5\Rightarrow \text{Cond}(A)=\|A\|_{\infty}\|A^{-1}\|_{\infty} = 25$$ Thus $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 25\times\epsilon\leq0.5\times10^{-m}$$ $$\Rightarrow \log(25\times\epsilon) \leq \log(0.5\times10^{-m})$$ $$\Rightarrow m\leq13.95459 $$ That is, 13 digits are at least correct in the solution vector.

Selected Problems

1. What factors does the adequacy of the solution of simultaneous linear equations depend on?

Solution:

The product of condition number Cond$(A)=\|A\|\|A^{-1}\|$ and machine epsilon $\epsilon$.

2. If a system of equations $[A][X]=[B]$ is ill-conditioned, then

A. $\det(A)=0$

B. Cond$(A)=1$

C. Cond$(A)$ is large

D. $\|A\|$ is large

Solution:

If the system is ill-conditioned, then the condition number Cond$(A)=\|A\|\|A^{-1}\|$ is large. The correct answer is C.

3. If Cond$(A)=10^{4}$ and $\epsilon=0.119\times10^{-6}$, then in $[A][X]=[B]$, at least how many significant digits are correct in the solution?

Solution:
$$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 10^{4}\times0.119\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m\leq {\log(0.5)-\log(0.119\times10^{-2})\over \log(10)} = 2.623423$$ Thus at least 2 significant digits are correct in the solution.

4. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3.999\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 4.000\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}5999\\ -2999\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=5997,\ \|A\|=5.999,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {5997 \big/ 2\over 0.002 \big/ 5.999} = 8994001$$ It is a large number. Hence we can conclude that this system is ill-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3999& 2000 \\ 2000& -1000 \end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5.999\times5999=35988 $$ which is also a large number.

5. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 3.001\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2.003\\ 0.997\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=0.003,\ \|A\|=5,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {0.003 \big/ 2\over 0.002 \big/ 5} = 3.75$$ It is a small number. Hence we can conclude that this system is well-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5\times5=25$$ which is also a small number.

6. Prove $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

Solution:

The key point is $\|XY\| \leq \|X\|\|Y\|$. Let $AX=B$, then if $B$ is changed to $B'$, the $X$ is changed to $X'$, such that $$AX'=B'$$ Hence we have $$AX=B,\ AX'=B'$$ $$\Rightarrow \Delta X=X'-X=A^ {-1}B'-A^{-1}B = A^{-1}\Delta B$$ $$\Rightarrow\|\Delta X\|\leq \|A^{-1}\|\|\Delta B\|$$ and $$AX=B\Rightarrow \|B\|=\|AX\| \leq \|A\|\|X\|$$ Multiply the above inequalities and obtain $$\|\Delta X\|\|B\| \leq \|A^{-1}\|\|\Delta B\|\|A\|\|X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

7. Prove $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

Solution:

Similar to the previous question, we have $$AX=B,\ A'X'=B$$ $$\Rightarrow AX=A'X'=(A+\Delta A)(X+\Delta X)=AX+A\Delta X+\Delta AX + \Delta A\Delta X$$ $$\Rightarrow A\Delta X+\Delta AX + \Delta A\Delta X = [0]$$ $$\Rightarrow \Delta A(X+\Delta X)=-A\Delta X $$ $$\Rightarrow \Delta X= -A^{-1}\Delta A(X+\Delta X) \leq \|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow \|A\|\Delta X\leq \|A\|\|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

8. Prove that Cond$(A) \geq 1$.

Solution:
$$\text{Cond}(A) = \|A\|\|A^{-1}\| \geq \|AA^{-1}\| = \|I\|=1$$

9. For $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$ gives $$[A]^{-1} = \begin{bmatrix}-0.1099& -0.2333& 0.2799\\ -0.2999& -0.3332& 0.3999\\ 0.04995& 0.1666& 6.664\times10^{-5}\end{bmatrix}$$ (A) What is the condition number of $[A]$?

(B) How many significant digits can we at least trust in the solution of $[A][X] = B$ if $\epsilon = 0.1192\times10^{-6}$?

Solution:

(A) Cond$(A) = \|A\|\|A^{-1}\| = 17\times1.033 = 17.561$

(B) $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 17.561\times0.1192\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m \leq 5.378145$$ Hence 5 significant digits can be trusted in the solution.

10. Let $$[A] = \begin{bmatrix}1& 2+\delta\\ 2-\delta& 1\end{bmatrix}$$ Based on the row sum norm and given that $\delta\rightarrow0$, $\delta > 0$, what is the condition number of the matrix?

Solution:

Recall that the inverse of the matrix $[M]=\begin{bmatrix}a &b\\ c &d \end{bmatrix}$ is $$\begin{bmatrix}{d\over\det(M)} & {-b\over \det(M)}\\ {-c\over\det(M)} &{a\over\det(M)} \end{bmatrix}$$ where $\det(M) = ad-bc$. Thus we have
$$A^{-1} = \begin{bmatrix}{1\over -3+\delta^2}& -{2+\delta\over -3+\delta^2}\\{-2+\delta\over -3+\delta^2}& {1\over -3+\delta^2}\end{bmatrix}$$ The row sum norms are
$$\|A\| = \max(3+\delta, 3-\delta) = 3+\delta$$ and $$\|A^{-1}\| = \max\left({3+\delta\over 3-\delta^2}, {3-\delta \over 3-\delta^2} \right) = {3+\delta\over 3-\delta^2}$$ Hence $$\text{Cond}(A) = \|A\|\|A^{-1}\| = {(3+\delta)^2\over3-\delta^2}$$

A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. Reverse Words in a String

    void reverseWords(string &s) { string res = "", tmp = ""; int l = s.length() ...

  2. 单例模式的两种实现方式对比:DCL (double check idiom)双重检查 和 lazy initialization holder class(静态内部类)

    首先这两种方式都是延迟初始化机制,就是当要用到的时候再去初始化. 但是Effective Java书中说过:除非绝对必要,否则就不要这么做. 1. DCL (double checked lockin ...

  3. 纯手工打造漂亮的垂直时间轴,使用最简单的HTML+CSS+JQUERY完成100个版本更新记录的华丽转身!

    前言 FineUI控件库发展至今已经有 5 个年头,目前论坛注册的QQ会员 5000 多人,捐赠用户 500 多人(捐赠用户转化率达到10%以上,在国内开源领域相信这是一个梦幻数字!也足以证明Fine ...

  4. Qt学习笔记常用容器

    主要说Qt的以下几种容器 1.QList<T> 2.QLinkedList<T> 3.Map<T> 和一些常用的容器方法的使用 qSort qCopy qFind ...

  5. Webwork 学习之路【06】Action 调用

    一路走来,终于要开始 webwork 核心业务类的总结,webwork 通过对客户端传递的 web 参数重新包装,进行执行业务 Action 类,并反馈执行结果,本篇源码分析对应下图 WebWork ...

  6. SQL基础之数据库快照

    1.认识快照 如名字一样,数据库快照就可以理解为数据库某一时刻的照片,它记录了此时数据库的数据信息.如果要认识快照的本质,那就要了解快照的工作原理.当我们执行t-sql创建快照后,此时就会创建一个或多 ...

  7. linux下部署项目问题

    1. 今天linux下部署thinkphp项目,数据库用的mysql. 页面其他都是正常的,但是从数据库中取出的数据都是乱码.最后查了资料 解决方案: 在ThinkPHP里面 Library\Thin ...

  8. vmware 在NAT模式下连接上外网

    文章: http://www.2cto.com/os/201504/389011.html

  9. url中#号的作用

    url中#号的作用就是本页面位置跳转 比如这个url地址:http://www.aaaaa.com/index.html?ad=34&m=c#red red就是index.html页面的依哥位 ...

  10. Web前端性能优化教程06:减少DNS查找、避免重定向

    本文是Web前端性能优化系列文章中的第六篇,主要讲述内容:减少DNS查找.避免重定向.完整教程可查看:  一.减少DNS查找 基础知识 DNS(Domain Name System): 负责将域名UR ...