“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第9章课程讲义下载(PDF)

Summary

  • Ill-conditional system

    • A system of equations is considered to be ill-conditioned if a small change in the coefficient matrix or a small change in the right hand side results in a large change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4.001\\ 7.998\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.998\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix} 6.989016\\ -1.497254\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a large change in the solution vector.
  • Well-conditional system
    • A system of equations is considered to be well-conditioned if a small change in the coefficient matrix of a small change in the right hand side results in a small change in the solution vector.
    • For example, the following system $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ The solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Make a small change in the right hand side vector of the equations $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix} ^{-1} \cdot \begin{bmatrix} 4.001\\ 7.001\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Make a small change in the coefficient matrix of the equations $$\begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001 \end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix} 1.001& 2.001\\ 2.001& 3.001\end{bmatrix} ^{-1}\cdot\begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix} 2.003\\ 0.997\end{bmatrix}$$ We can see that a small change in the coefficient matrix or the right hand side resulted in a small change in the solution vector.
  • Norm
    • Just like the determinant, the norm of a matrix is a simple unique scalar number. For a $m\times n$ matrix $[A]$, the row sum norm of $[A]$ is defined as $$\|A\|_{\infty}=\max_{1\leq i\leq m}\sum_{j=1}^{n}|a_{ij}|$$ that is, find the sum of the absolute value of the elements pf each row of the matrix $[A]$. The maximum out of the $m$ such values is the row sum norm if the matrix $[A]$.
    • For example, we have the following matrix $$[A] = \begin{bmatrix}10& -3& 5\\ -7& 2.099& -1\\ 0& 6& 5\end{bmatrix}$$ The row sum norm of $[A]$ is $$\|A\|_{\infty} = \max_{1\leq i\leq3} \sum_{j=1}^{3}|a_{ij}|$$ $$=\max[(10+7+0), (3+2.099+6), (5,-1,5)]$$ $$=\max[17, 11.099, 11] =17$$
  • The relationship between the norm and the conditioning of the matrix
    • Example of the ill-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7.999$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3.999\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.998\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}-3.999\\ 4.000\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}-3.999\\ 4.000\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-5.999\\ 3.000\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.998\end{bmatrix} - \begin{bmatrix}4\\ 7.999\end{bmatrix} = \begin{bmatrix}0.001\\ -0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 5.999$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {5.999\over2}=2.9995$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7.999}=1.25\times10^{-4}$$ That is, the small relative change of $1.25\times10^{-4}$ in the right hand side vector norm results in a large relative change in the solution vector norm of $2.9995$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 23993$$
    • Example of the well-conditioned system. $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ which has the solution $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$ Denoting the above system as $AX=B$, and hence we have $$\|X\|_{\infty}=2$$ $$\|B\|_{\infty}=7$$ Making a small change in the right hand side $$\begin{bmatrix} 1& 2\\ 2& 3\end{bmatrix}\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4.001\\ 7.001\end{bmatrix}$$ gives $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}1.999\\ 1.001\end{bmatrix}$$ Denoting the above changed system as $AX'=B'$ and $$\Delta X=X'-X=\begin{bmatrix}1.999\\ 1.001\end{bmatrix} - \begin{bmatrix}2\\ 1\end{bmatrix} = \begin{bmatrix}-0.001\\ 0.001\end{bmatrix}$$ $$\Delta B=B'-B = \begin{bmatrix}4.001\\ 7.001\end{bmatrix} - \begin{bmatrix}4\\ 7\end{bmatrix} = \begin{bmatrix}0.001\\ 0.001\end{bmatrix}$$ Then $$\|\Delta X\|_{\infty} = 0.001$$ $$\|\Delta B\|_{\infty} = 0.001$$ The relative change in the norm of the solution vector is $${\|\Delta X\|_{\infty}\over \|X\|_{\infty}} = {0.001\over2}=5\times10{-4}$$ The relative change in the norm of the right hand side vector is $${\|\Delta B\|_{\infty}\over \|B\|_{\infty}} = {0.001\over7} = 1.429 \times 10^{-4}$$ That is, the small relative change of $1.429\times10^{-4}$ in the right hand side vector norm results in a small relative change in the solution vector norm of $5\times10^{-4}$. We can see the ratio of this two norms is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta B\|_{\infty} \big/ \| B\|_{\infty}} = 3.5$$
  • Properties of Norms
    • $\|A\| \geq 0$
    • $\|kA\| = |k|\|A\|$ where $k$ is a scalar.
    • $\|A+B\|\leq \|A\| + \|B\|$
    • $\|AB\| \leq \|A\|\cdot\|B\|$
    • For a system $AX=B$, we have $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$ and $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$ where $\|A\|\|A^{-1}\|$ is called the \textbf{condition number}, Cond$(A)$.
  • Significant Digits
    • The possible relative error in the solution vector norm is no more then Cond$(A)\times\epsilon$, where $\epsilon$ is the machine epsilon which is $2.220446\times10^{-16}$ or $2^{-52}$ here (obtained by R code .Machine$double.eps on 64-bit PC, more details refer to link1 and link2).
      Hence Cond$(A) \times \epsilon$ should give us the number of significant digits, $m$ that are at least correct in our solution by finding out the largest value of $m$ for which Cond$(A) \times\epsilon$ is less than or equal to $0.5\times 10^{-m}$.
    • How many significant digits can I trust in the solution of the following system of equations? $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ For $$A=\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix}$$ and $$A^{-1}= \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$$ Then $$\|A\|_{\infty}=5,\ \|A^{-1}\|_{\infty}=5\Rightarrow \text{Cond}(A)=\|A\|_{\infty}\|A^{-1}\|_{\infty} = 25$$ Thus $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 25\times\epsilon\leq0.5\times10^{-m}$$ $$\Rightarrow \log(25\times\epsilon) \leq \log(0.5\times10^{-m})$$ $$\Rightarrow m\leq13.95459 $$ That is, 13 digits are at least correct in the solution vector.

Selected Problems

1. What factors does the adequacy of the solution of simultaneous linear equations depend on?

Solution:

The product of condition number Cond$(A)=\|A\|\|A^{-1}\|$ and machine epsilon $\epsilon$.

2. If a system of equations $[A][X]=[B]$ is ill-conditioned, then

A. $\det(A)=0$

B. Cond$(A)=1$

C. Cond$(A)$ is large

D. $\|A\|$ is large

Solution:

If the system is ill-conditioned, then the condition number Cond$(A)=\|A\|\|A^{-1}\|$ is large. The correct answer is C.

3. If Cond$(A)=10^{4}$ and $\epsilon=0.119\times10^{-6}$, then in $[A][X]=[B]$, at least how many significant digits are correct in the solution?

Solution:
$$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 10^{4}\times0.119\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m\leq {\log(0.5)-\log(0.119\times10^{-2})\over \log(10)} = 2.623423$$ Thus at least 2 significant digits are correct in the solution.

4. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3.999\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 4.000\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7.999\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}5999\\ -2999\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=5997,\ \|A\|=5.999,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {5997 \big/ 2\over 0.002 \big/ 5.999} = 8994001$$ It is a large number. Hence we can conclude that this system is ill-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3999& 2000 \\ 2000& -1000 \end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5.999\times5999=35988 $$ which is also a large number.

5. Make a small change in the coefficient matrix of $$\begin{bmatrix}1& 2 \\ 2& 3\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and find $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}}$$

Solution:

The solution of the original system is $$ \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2\\ 1\end{bmatrix}$$
Making a small change in the coefficient matrix as $$\begin{bmatrix} 1.001& 2.001 \\ 2.001& 3.001\end{bmatrix} \begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}4\\ 7\end{bmatrix}$$ and the solution is $$\begin{bmatrix}x\\ y\end{bmatrix} = \begin{bmatrix}2.003\\ 0.997\end{bmatrix}$$ Hence the row sum norms are $$\|X\| = 2,\ \|\Delta X\|=0.003,\ \|A\|=5,\ \|\Delta A\|=0.002$$ Thus the ratio is $${\|\Delta X\|_{\infty} \big/ \|X\|_{\infty}\over \|\Delta A\|_{\infty} \big/ \| A\|_{\infty}} = {0.003 \big/ 2\over 0.002 \big/ 5} = 3.75$$ It is a small number. Hence we can conclude that this system is well-conditioned. On the other hand, we can calculate the condition number of the coefficient matrix, note that $A^{-1} = \begin{bmatrix}-3& 2 \\ 2& -1\end{bmatrix}$, and hence $$\|A\|\|A^{-1}\|= 5\times5=25$$ which is also a small number.

6. Prove $${\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

Solution:

The key point is $\|XY\| \leq \|X\|\|Y\|$. Let $AX=B$, then if $B$ is changed to $B'$, the $X$ is changed to $X'$, such that $$AX'=B'$$ Hence we have $$AX=B,\ AX'=B'$$ $$\Rightarrow \Delta X=X'-X=A^ {-1}B'-A^{-1}B = A^{-1}\Delta B$$ $$\Rightarrow\|\Delta X\|\leq \|A^{-1}\|\|\Delta B\|$$ and $$AX=B\Rightarrow \|B\|=\|AX\| \leq \|A\|\|X\|$$ Multiply the above inequalities and obtain $$\|\Delta X\|\|B\| \leq \|A^{-1}\|\|\Delta B\|\|A\|\|X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X\|} \leq \|A\|\|A^{-1}\|{\|\Delta B\|\over \|B\|}$$

7. Prove $${\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

Solution:

Similar to the previous question, we have $$AX=B,\ A'X'=B$$ $$\Rightarrow AX=A'X'=(A+\Delta A)(X+\Delta X)=AX+A\Delta X+\Delta AX + \Delta A\Delta X$$ $$\Rightarrow A\Delta X+\Delta AX + \Delta A\Delta X = [0]$$ $$\Rightarrow \Delta A(X+\Delta X)=-A\Delta X $$ $$\Rightarrow \Delta X= -A^{-1}\Delta A(X+\Delta X) \leq \|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow \|A\|\Delta X\leq \|A\|\|A^{-1}\|\|\Delta A\|\|X+\Delta X\|$$ $$\Rightarrow {\|\Delta X\|\over \|X + \Delta X\|} \leq \|A\|\|A^{-1}\|{\|\Delta A\|\over \|A\|}$$

8. Prove that Cond$(A) \geq 1$.

Solution:
$$\text{Cond}(A) = \|A\|\|A^{-1}\| \geq \|AA^{-1}\| = \|I\|=1$$

9. For $$[A] = \begin{bmatrix}10& -7& 0\\ -3& 2.099& 6\\ 5& -1& 5\end{bmatrix}$$ gives $$[A]^{-1} = \begin{bmatrix}-0.1099& -0.2333& 0.2799\\ -0.2999& -0.3332& 0.3999\\ 0.04995& 0.1666& 6.664\times10^{-5}\end{bmatrix}$$ (A) What is the condition number of $[A]$?

(B) How many significant digits can we at least trust in the solution of $[A][X] = B$ if $\epsilon = 0.1192\times10^{-6}$?

Solution:

(A) Cond$(A) = \|A\|\|A^{-1}\| = 17\times1.033 = 17.561$

(B) $$\text{Cond}(A)\times\epsilon \leq 0.5\times10^{-m}$$ $$\Rightarrow 17.561\times0.1192\times10^{-6} \leq 0.5\times10^{-m}$$ $$\Rightarrow m \leq 5.378145$$ Hence 5 significant digits can be trusted in the solution.

10. Let $$[A] = \begin{bmatrix}1& 2+\delta\\ 2-\delta& 1\end{bmatrix}$$ Based on the row sum norm and given that $\delta\rightarrow0$, $\delta > 0$, what is the condition number of the matrix?

Solution:

Recall that the inverse of the matrix $[M]=\begin{bmatrix}a &b\\ c &d \end{bmatrix}$ is $$\begin{bmatrix}{d\over\det(M)} & {-b\over \det(M)}\\ {-c\over\det(M)} &{a\over\det(M)} \end{bmatrix}$$ where $\det(M) = ad-bc$. Thus we have
$$A^{-1} = \begin{bmatrix}{1\over -3+\delta^2}& -{2+\delta\over -3+\delta^2}\\{-2+\delta\over -3+\delta^2}& {1\over -3+\delta^2}\end{bmatrix}$$ The row sum norms are
$$\|A\| = \max(3+\delta, 3-\delta) = 3+\delta$$ and $$\|A^{-1}\| = \max\left({3+\delta\over 3-\delta^2}, {3-\delta \over 3-\delta^2} \right) = {3+\delta\over 3-\delta^2}$$ Hence $$\text{Cond}(A) = \|A\|\|A^{-1}\| = {(3+\delta)^2\over3-\delta^2}$$

A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 7. LU Decomposition

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. SQLServer(MSSQL)、MySQL、SQLite、Access相互迁移转换工具 DB2DB v1.3

    最近公司有一个项目,需要把原来的系统从 MSSQL 升迁到阿里云RDS(MySQL)上面.为便于测试,所以需要把原来系统的所有数据表以及测试数据转换到 MySQL 上面.在百度上找了很多方法,有通过微 ...

  2. 领导让我重新做一个微信H5页面!

    leader:我们需要做一个微信H5页面,效果如图,功能如描述,时间越快越好. 需求是不是很简单呢?2015-11-24 12:44:00文末有最新更新 背景描述 前几天微信转发相关项目开发后,这是第 ...

  3. SublimeText3下的Python开发环境配置

    最近重装了机器,需要重新安装Python的开发环境,中间遇到了几个问题,特些记录一下,以防下次备忘. 从Python的网站下载安装Python,这个非常简单,没有什么值得说的,大家可以参考廖雪峰的这个 ...

  4. python基础-内置函数详解

    一.内置函数(python3.x) 内置参数详解官方文档: https://docs.python.org/3/library/functions.html?highlight=built#ascii ...

  5. Beta项目冲刺--第三天

    又找回熟悉的感觉.... 队伍:F4 成员:031302301 毕容甲 031302302 蔡逸轩 031302430 肖阳 031302418 黄彦宁 会议内容: 1.站立式会议照片: 2.项目燃尽 ...

  6. Linux(Ubuntu)下如何安装JDK

    一.下载 首先,当然是要下载了. 按照需要选择不同的版本.笔者选择的是 jdk-7u45,如图: 二. 解压 将下载下来的 .tar.gz 文件解压. 使用如下命令解压: sudo tar zxvf ...

  7. 关于insert /*+ append*/ 各种insert插入速度比较

    来源于:http://www.cnblogs.com/rootq/archive/2009/02/11/1388043.html SQL> select count(*) from t;COUN ...

  8. http强制跳转到https

    原文地址:http://m.blog.csdn.net/article/details?id=8549290 需求简介 基于nginx搭建了一个https访问的虚拟主机,监听的域名是test.com, ...

  9. iOS开发,音效的播放简单实现以及音效播放的简单封装

    一.音效的播放简单实现 二.音效播放的封装 -- 封装思路:将生成的SystemSoundID存放到字典中,每次播放的时候从字典中取出对应的SystemSoundID,没有的话再创建 头文件中定义类方 ...

  10. iPad开发--iPad中modal的更多用法

    可以设置modal的呈现样式,常见的有以下四种                                   设置modal的过度样式,也就是展现时候的动画效果 代码示例