玩家从n 个点n-1 条边的图,从节点1 丢下一个小球,小球将由于重力作用向下落,而
从小球所在点延伸出的每一条边有一个值pi 为小球通过该条边的概率(注意从同一个节点
向下延伸的所有边的pi 的和可以小于1,也可以大于1,并且保证对于单独的一条边不会出
现pi>1 的情况),而对于所有处于最下方的节点(如图红点所示)都可以有一个值vi,代
表玩家可以获得的奖励。现在老板给你这样一张图,之后给你n 个vi 的值,老板希望玩家
可以获得的奖励的期望值最小。(对题目不理解可以参见样例)
Ps:小球不会逆着重力往回滚QAQ。保证所给出的图无重边。
★数据输入
输入第一行为一个正整数N (2 < N < 10000), 表示有n 个节点,编号为1 到N。
接下来N-1 行,每行三个整数a b pi ,表示从a,b 之间有一条路径,经过这条路径的
可能性为pi。
接下来一行为有n 个整数,表示n 个vi 的值(10000>=vi>0)。
★数据输出

输入第一行为一个正整数N (2 < N < 10000), 表示有n 个节点,编号为1 到N。
接下来N-1 行,每行三个整数a b pi ,表示从a,b 之间有一条路径,经过这条路径的
可能性为pi。
接下来一行为有n 个整数,表示n 个vi 的值(10000>=vi>0)。
★数据输出
对于每个询问,输出一行一个数精度要求为.10lf,表示最小的奖励期望值。
输入示例输出示例
7

1 2 0.8
1 3 0.2
2 4 1.0
4 7 1.0
3 5 0.7
3 6 0.3
1 2 3 4 5 6 7
1.2600000000

表示题目看了好久才懂~(最后的n个vi值不一定全部需要用到,根据建立的二叉树,才能确定需要用到多少个)

开始没弄懂父节点数组表示法,按照自己的思路做,写了一个好搞笑的代码,然后又尝试用孩子链表表示法做还是行不通,然后又认真研究了一下父节点数组表示法,看到这个代码,顿时豁然开朗:

 #include <iostream>
using namespace std; #define MAX_TREE_SIZE 100
typedef struct //节点结构
{
char data;
int parent; //双亲位置域
}PTNode; typedef struct //树结构
{
PTNode node[MAX_TREE_SIZE];
int count; //根的位置和节点个数
}PTree; //初始化树
void init_ptree(PTree &tree)
{
tree.count=-;
}
//添加节点
void add_ptnode(PTree &tree, PTNode ptnode)
{
tree.count++;
tree.node[tree.count].data = ptnode.data;
tree.node[tree.count].parent = ptnode.parent;
}
//输出树
void print_ptree(PTree &tree)
{
int i;
for(i=;i<=tree.count;i++)
{
cout<<" "<<i<<" "<<tree.node[i].data<<" "<<tree.node[i].parent<<endl;
}
}
//前序遍历
void PreOrder(PTree &tree , int num)
{
for(int i=num; i<=tree.count; i++)
{
if(i == num)
{
cout<<" "<<i<<" "<<tree.node[i].data<<" "<<tree.node[i].parent<<endl;
for(int j=num+ ; j<=tree.count; j++)
{
if(tree.node[j].parent == i)
{
PreOrder(tree , j);
}
}
}
}
}//PreOrder
//树没有中序遍历
//后序遍历
void BackOrder(PTree &tree , int num)
{
for(int i=num; i<=tree.count; i++)
{
if(i == num)
{
for(int j=num+ ; j<=tree.count; j++)
{
if(tree.node[j].parent == i)
{
BackOrder(tree , j);
}
}
cout<<" "<<i<<" "<<tree.node[i].data<<" "<<tree.node[i].parent<<endl; }
}
}//BackOrder int main()
{
FILE *fin=fopen("树的表示法.txt","r"); PTree ptree;
init_ptree(ptree);
PTNode ptnode; while(fscanf(fin,"%c%d",&ptnode.data,&ptnode.parent)!=EOF)
{
add_ptnode(ptree,ptnode);
fscanf(fin,"%c%d",&ptnode.data,&ptnode.parent);
}
//输出树
cout<<"数组下标 节点值 双亲位置"<<endl;
print_ptree(ptree); //前序遍历
//cout<<endl;
//PreOrder(ptree,0); //后序遍历
//cout<<endl;
//BackOrder(ptree,0); fclose(fin);
return ;
}

根据父节点建立的二叉树算法思路,自己写了下面的代码,关键在于后续遍历中,找最后根结点的算法!想了好久,最后还是从数据中找到了规律:

 #include<stdio.h>

 double ans=0.0,a[];
int t=; typedef struct
{
double data; //数据域
int parent; //父节点位置
}PTNode; typedef struct
{
PTNode node[]; //根结构
int count; //根的结点个数
}PTree; PTree ptree;
PTNode ptnode; void add_ptnode(int x1,int x2,double pro)
{
ptree.node[x2].parent=x1; //储存结点的父节点
ptree.node[x2].data=pro*ptree.node[x1].data;//计算权值
} void BackOrder(PTree tree,int num)//后序遍历,递归实现
{
int i,j;
i=num;
if(i<=tree.count)
{
for(j=num+;j<=tree.count;j++)
{
if(tree.node[j].parent==i)//找到该节点的子节点
{
BackOrder(tree,j); //子节点作为新的父节点,向下递归
if((j+i)>tree.count) //分支最低结点算法,判断为(i+j>tree,count)
{
ans+=(a[t]*tree.node[j].data);
t++; } }
} } } int main()
{
int n,i,sit_1,sit_2;
double pro;
scanf("%d",&n);
ptree.count=n;
for(i=;i<=n;i++)
{
ptree.node[i].data=;
} for(i=;i<n-;i++)
{
scanf("%d %d %lf",&sit_1,&sit_2,&pro);
add_ptnode(sit_1,sit_2,pro);
} for(i=;i<n;i++)
{
scanf("%lf",&a[i]);
} BackOrder(ptree,);
printf("%.10lf\n",ans); return ;
}

做题找对算法真的很重要!!!

最终提交代码 修改日期:2013-10-29 15:01:21

 #include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std; struct PNnode
{
double data;//数据域
int parents;
}; struct PTree
{
PNnode node[];
int count;//节点数
}; PTree ptree;
PNnode pnode;
double ans=0.0,a[],b[];
int t=; int f[]={}; void insert(int x1,int x2,double pro)//插入父节点
{
ptree.node[x2].parents=x1;
ptree.node[x2].data=pro;
f[x1]=;
} /*void search(PTree pt,int n)
{
for(int i=n;i<=pt.count;i++)
{
if(i==n)
{
for(int j=n+1;j<=pt.count;j++)
{
if(pt.node[j].parents==i)
{
pt.node[j].data=pt.node[j].data*pt.node[i].data;
if(f[j]==0)
{
b[t]=pt.node[j].data;
t++;
}
search(pt,j);
}
} }
}
}*/ int main()
{
int n,i,sit_1,sit_2;
double pro;
f[]=;
scanf("%d",&n);
ptree.count=n; for(i=;i<=n;i++)//初始化data
ptree.node[i].data=1.0; for(i=;i<n-;i++)
{
scanf("%d %d %lf",&sit_1,&sit_2,&pro);
insert(sit_1,sit_2,pro);
}
for(i=;i<n;i++)
scanf("%lf",&a[i]); int j=,t=;
for(int q=;q<=ptree.count;q++)
{
if(f[q]==)//最低结点
{
b[t]=1.0;
j=q;
while(j!=)
{
b[t]=b[t]*ptree.node[j].data;
j=ptree.node[j].parents;
//printf("b[%d]=%lf\n",t,b[t]);
}
t++;
}
} //for(i=0;i<t;i++)
// printf("%lf ",b[i]);
//printf("\n");
//for(i=0;i<n;i++)
// printf("%lf ",a[i]);
//printf("\n");
sort(a,a+n);
sort(b,b+t); //for(i=0;i<t;i++)
// printf("%lf ",b[i]);
//printf("\n");
// for(i=0;i<n;i++)
// printf("%lf ",a[i]);
//printf("\n");
for(i=;i<t;i++)
{
ans+=(a[i]*b[t-i-]); } printf("%.10lf\n",ans);
return ;
}

19:33:14

不仅仅是一道题的解决,更重要的是背后的知识。加油吧,少年!

by :FZUer

数据结构与算法实验题6.1 s_sin’s bonus byFZuer的更多相关文章

  1. 数据结构与算法实验题 6.1 s_sin’s bonus

    数据结构与算法实验题 6.1 s_sin's bonus ★实验任务 正如你所知道的 s_sin 是一个非常贪玩的人 QAQ(如果你非常讨厌他请直接从第二段开 始看),并且令人感到非常遗憾的是,他是一 ...

  2. 数据结构与算法实验题 9.1 K 歌 DFS+剪枝

    数据结构与算法实验题 K 歌 ★实验任务 3* n 个人(标号1~ 3 * n )分成 n 组 K 歌.有 m 个 3 人组合,每个组合都对应一个分数,你能算出最大能够得到的总分数么? ★数据输入 输 ...

  3. 数据结构与算法实验题 4.2 Who is the strongest

    数据结构与算法实验题 4.2 Who is the strongest ★实验任务 在神奇的魔法世界,召唤师召唤了一群的魁偶.这些魁偶排成一排,每个魁偶都有一个 战斗值.现在该召唤师有一个技能,该技能 ...

  4. HDU 3791 二叉搜索树 (数据结构与算法实验题 10.2 小明) BST

    传送门:http://acm.hdu.edu.cn/showproblem.php?pid=3791 中文题不说题意. 建立完二叉搜索树后进行前序遍历或者后序遍历判断是否一样就可以了. 跟这次的作业第 ...

  5. 数据结构与算法实验题7.1 M 商人的求救

    问题描述:A 国正面临着一场残酷的战争,城市被支持不同领导的两股势力占据,作为一个商人,M先生并不太关心政治,但是他知道局势很严重,他希望你能救他出去.M 先生说:“为了安全起见,我们的路线最多只能包 ...

  6. 数据结构与算法实验题 7.1 M 商人的求救

    问题描述: A 国正面临着一场残酷的战争,城市被支持不同领导的两股势力占据,作为一个商人,M先生并不太关心政治,但是他知道局势很严重,他希望你能救他出去.M 先生说:"为了安全起见,我们的路 ...

  7. DS实验题 Dijkstra算法

    参考:Dijkstra算法 数据结构来到了图论这一章节,网络中的路由算法基本都和图论相关.于是在拿到DS的实验题的时候,决定看下久负盛名的Dijkstra算法. Dijkstra的经典应用是开放最短路 ...

  8. 大公司面试经典数据结构与算法题C#/Java解答

    几个大公司(IBM.MicroSoft and so on)面试经典数据结构与算法题C#解答 1.链表反转 我想到了两种比较简单的方法 第一种是需要开一个新的链表,将原链表的元素从后到前的插入到新链表 ...

  9. 【算法】数据结构与算法基础总览(中)——刷Leetcode等算法题时一些很实用的jdk辅助方法锦集

    最近重新学习数据结构与算法以及刷leetcode算法题时,发现不少jdk自带的方法可以提升刷题的效率.这些小技巧不仅仅对刷算法题带来便利,对我们平时开发也是很有帮助的.本文以java语言为基础,记录了 ...

随机推荐

  1. Deep Learning in a Nutshell: History and Training

    Deep Learning in a Nutshell: History and Training This series of blog posts aims to provide an intui ...

  2. jquery实现图片预加载

    使用jquery实现图片预加载提高页面加载速度和用户体,本就为大家详细分析jquery图片预加载的实现原理. 什么时候使用图片预加载? 如果页面使用了很多不是最初加载便可见的图片,有必要进行预加载: ...

  3. Yii2 事务

    $transaction = $connection->beginTransaction(); try { // ... executing other SQL statements ... $ ...

  4. js字符串转成数字的三种方法

    js读取的html代码中获得的值 ,统统是以字符串的形式呈现的,为了方便我们后面对数据的操作,有时候我们有必要进行转换一下. 方法主要有三种 转换函数.强制类型转换.利用js变量弱类型转换. 1. 转 ...

  5. VisualStudio基本使用(1)-显示行号

    "工具"-"选项"-"文本编辑器"-"C/C++"-"常规",勾选"行号"复选框 ...

  6. mapreduce 自定义数据类型的简单的应用

    本文以手机流量统计为例: 日志中包含下面字段 现在需要统计手机的上行数据包,下行数据包,上行总流量,下行总流量. 分析:可以以手机号为key 以上4个字段为value传传递数据. 这样则需要自己定义一 ...

  7. 给各位聚聚和大大介绍一个开源项目 Expression2Sql(转)

    阅读目录 一.Expression2Sql介绍 二.单表简单查询 三.Where条件 四.多表关联查询 五.group by 六.order by 七.函数 八.delete 删除 九.update ...

  8. windows下vmware10.0 安装centos7

    centos7.0-1506, 1511, 是指2015年, 06月份, 11月份. 这是rhel ubuntu发布新版本的时间. centos7.0 只提供了64位的系统下载: x86_64: we ...

  9. 使用Minify来优化网站性能

    Minify 是用PHP5开发的应用,通过遵循一些Yahoo的优化规则来提高网站的性能.它会合并多个CSS或者JavaScript文件,移除一些不必要的空格和注释,进行gzip压缩,并且会设置浏览器的 ...

  10. ML_R Kmeans

    Kmeans作为机器学习中入门级算法,涉及到计算距离算法的选择,聚类中心个数的选择.下面就简单介绍一下在R语言中是怎么解决这两个问题的. 参考Unsupervised Learning with R ...