ELM(Extreme Learning Machine)是一种新型神经网络算法,最早由Huang于2004年提出【Extreme learning

machine: a new learning scheme of feedforward neural networks】。
与SVM,传统神经网络相比,ELM的训练速度非常快,需要人工干扰较少,对于异质的数据集其泛化能力很强。
Huang在【Extreme learning machines: a survey,2011】这篇论文中对ELM进行了总结,包括最初的ELM算法和后来被发展延伸的ELM算法(比如在线序列ELM算法、增量ELM算法和集成ELM算法等),里面的很多知识点值得学习。
ELM的原理
从神经网络的结构上来看,ELM是一个简单的SLFN,SLFN示意图如下:

该SLFN包括三层:输入层、隐含层和输出层(忽略输入层则为两层)。其中隐含层包括L个隐含神经元,一般情况下L远小于N,输出层的输出为m维的向量,对于二分类问题,显然该向量是一维的。
对于一个训练数据样本,忽略输入层和隐含层而只考虑隐含层神经元的输出和输出层,则神经网络的输出函数表达式为:ai和bi是隐含层节点的参数,表示第i个隐含层神经元和输出神经元之间的连接权值,即它是一个m维的权值向量。公式里面的G是隐含层神经元的输出。针对加法型隐含层节点,G为:其中,小g为激励函数,激励函数可以是线性函数,也可以是sigmoid函数;针对RBF型隐含层节点,G为:ai和bi分别表示了第i个径向基函数节点的中心和影响因子。
神经网络输出函数可以写成:,其中:

如果神经网络能够无误差的预测训练样本,那么隐含层和输出层的权值是有解的,特别的,当L=N时,肯定有解。但是实际问题中,L往往是远小于N的,那么求解权值向量的问题是无解的,即网络输出和实际值之间有误差,可以定义代价函数为:

接下来如何求解最优的权值向量,使得损失函数J最小呢?
针对这个问题ELM分两种情况解决:
a.如果H是列满秩的,那么可以通过最小二乘找到最佳的权值,其解为:,其中:

b.如果H是非列满秩的,则使用奇异值分解求解H的广义逆来计算最佳权值。

和BP使用梯度下降迭代更新所有层之间权值不同,ELM不调整SLFN的输入层和隐含层的权值,这些权值是随即设定的,因此ELM的训练速度非常快。ELM注重于隐含层到输出层的权值的选取,其采用的方法是最小二乘。
ELM算法一般可以描述如下:

在Huang的survey中描述了一种思想,该思想把SVM也看成了神经网络,该思想把神经网络的输入层到最后一层隐含层的部分或者SVM核函数映射的部分都看成了从输入空间到一个新的空间的转换,然后,BP会将误差反向传播更新权值使得误差最小化,而SVM则力求找到最大分界间隔的分界面,将新空间映射到输出空间,从这个角度来看,SVM确实可以看成是一种神经网络。
ELM最初算法就如上所述,从2004年至今,后来的学者对其进行了很多改进,主要包括对输入层和隐含层权值随即确定权值的优化、求解隐含层和输出层权值的优化(使得ELM更适应于噪声数据集)、核函数ELM以及加入了正则化项的损失函数(求解结构风险而不再是经验风险)、ELM和其他方法相结合等。ELM为神经网络的结构设计提供了一个新的思路,使我们更好地理解神经网络,但是还有很多问题需要解决,比如隐含层节点个数的确定,正则化项的选择等等。作为一个性能很好的机器,我们也可以将其应用到诸多交叉学科的应用中。

paper 103:ELM算法的更多相关文章

  1. paper 84:机器学习算法--随机森林

    http://www.cnblogs.com/wentingtu/archive/2011/12/13/2286212.html中一些内容 基础内容: 这里只是准备简单谈谈基础的内容,主要参考一下别人 ...

  2. 【uva 177】Paper Folding(算法效率--模拟)

    P.S.模拟真の难打,我花了近乎三小时!o(≧口≦)o 模拟题真的要思路清晰!分块调试. 题意:著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折--每次对折都是从右往左折,因此在折了很多次以后 ...

  3. paper 102:极限学习机(Extreme Learning Machine)

    原文地址:http://blog.csdn.net/google19890102/article/details/18222103   极限学习机(Extreme Learning Machine) ...

  4. 使用Cross-validation (CV) 调整Extreme learning Machine (ELM) 最优参数的实现(matlab)

    ELM算法模型是最近几年得到广泛重视的模型,它不同于现在广为火热的DNN. ELM使用传统的三层神经网络,只包含一个隐含层,但又不同于传统的神经网络.ELM是一种简单易用.有效的单隐层前馈神经网络SL ...

  5. ELM极限学习机

    极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的 ...

  6. Redis内存管理中的LRU算法

    在讨论Redis内存管理中的LRU算法之前,先简单说一下LRU算法: LRU算法:即Least Recently Used,表示最近最少使用页面置换算法.是为虚拟页式存储管理服务的,是根据页面调入内存 ...

  7. 快速上手RaphaelJS-Instant RaphaelJS Starter翻译(一)

       (目前发现一些文章被盗用的情况,我们将在每篇文章前面添加原文地址,本文源地址:http://www.cnblogs.com/idealer3d/p/Instant_RaphaelJS_Start ...

  8. 实施vertex compression所遇到的各种问题和解决办法

    关于顶点压缩,好处是可以减少带宽,一定程度提高加载速度,可以提高约5-10%的fps,特别是mobile上,简单描述就是: 压缩之前(32字节) position float3 12normal fl ...

  9. 基于2-channel network的图片相似度判别

    一.相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:<Learning to Compare Image Patches via Convolutional Neur ...

随机推荐

  1. (转)FTP操作类,从FTP下载文件

    using System; using System.Collections.Generic; using System.Text; using System.IO; using System.Net ...

  2. Hadoop.2.x_HA部署

    一.概念与HA思路 1. 首先Hadoop架构为主从架构(NameNode/DataNode) 2. NameNode管理着文件系统和与维护客户端访问DataNode 3. Hadoop 2.0 之前 ...

  3. spring security使用数据库管理用户权限

    <authentication-provider> <user-service> <user name="admin" password=" ...

  4. Learn ZYNQ Programming(1)

    GPIO LED AND KEY: part1:gpio leds and gpio btns combination. (include 1~4) part2:use gpio btns inter ...

  5. paramter的添加

    public string GetUserIdByName(string UserName, string pwd)    {        string sql = @"select Na ...

  6. javascript事件有哪些?javascript的监听事件

    事件类型: 1.界面事件 onload:描述文档,图片,css已经frame,object加载完毕时触发,window.onload window.onload = function(){ //代表图 ...

  7. 【iCore3 双核心板_FPGA】实验十六:基于SPI总线的ARM与FPGA通信实验

    实验指导书及代码包下载: http://pan.baidu.com/s/1hs6lDdi iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...

  8. HTTP Error 500 - Server Error.

    Error Details: The FastCGI process exited unexpectedly Error Number: -1073741819 (0xc0000005). Error ...

  9. JavaDate类

    在JDK1.0中,Date类是唯一的一个代表时间的类,但是由于Date类不便于实现国际化,所以从JDK1.1版本开始,推荐使用Calendar类进行时间和日期处理.这里简单介绍一下Date类的使用. ...

  10. 在Win7系统中搭建Web服务器

    局 域网Web服务器的主要功能是实现资源共享,同时借助于局域网服务器访问页面可有效的实现信息的同步.利用Web服务器,我们随时随地都可以将自己的信息 上传到服务器端,让其它关注你的用户能在第一时间内了 ...