ELM(Extreme Learning Machine)是一种新型神经网络算法,最早由Huang于2004年提出【Extreme learning

machine: a new learning scheme of feedforward neural networks】。
与SVM,传统神经网络相比,ELM的训练速度非常快,需要人工干扰较少,对于异质的数据集其泛化能力很强。
Huang在【Extreme learning machines: a survey,2011】这篇论文中对ELM进行了总结,包括最初的ELM算法和后来被发展延伸的ELM算法(比如在线序列ELM算法、增量ELM算法和集成ELM算法等),里面的很多知识点值得学习。
ELM的原理
从神经网络的结构上来看,ELM是一个简单的SLFN,SLFN示意图如下:

该SLFN包括三层:输入层、隐含层和输出层(忽略输入层则为两层)。其中隐含层包括L个隐含神经元,一般情况下L远小于N,输出层的输出为m维的向量,对于二分类问题,显然该向量是一维的。
对于一个训练数据样本,忽略输入层和隐含层而只考虑隐含层神经元的输出和输出层,则神经网络的输出函数表达式为:ai和bi是隐含层节点的参数,表示第i个隐含层神经元和输出神经元之间的连接权值,即它是一个m维的权值向量。公式里面的G是隐含层神经元的输出。针对加法型隐含层节点,G为:其中,小g为激励函数,激励函数可以是线性函数,也可以是sigmoid函数;针对RBF型隐含层节点,G为:ai和bi分别表示了第i个径向基函数节点的中心和影响因子。
神经网络输出函数可以写成:,其中:

如果神经网络能够无误差的预测训练样本,那么隐含层和输出层的权值是有解的,特别的,当L=N时,肯定有解。但是实际问题中,L往往是远小于N的,那么求解权值向量的问题是无解的,即网络输出和实际值之间有误差,可以定义代价函数为:

接下来如何求解最优的权值向量,使得损失函数J最小呢?
针对这个问题ELM分两种情况解决:
a.如果H是列满秩的,那么可以通过最小二乘找到最佳的权值,其解为:,其中:

b.如果H是非列满秩的,则使用奇异值分解求解H的广义逆来计算最佳权值。

和BP使用梯度下降迭代更新所有层之间权值不同,ELM不调整SLFN的输入层和隐含层的权值,这些权值是随即设定的,因此ELM的训练速度非常快。ELM注重于隐含层到输出层的权值的选取,其采用的方法是最小二乘。
ELM算法一般可以描述如下:

在Huang的survey中描述了一种思想,该思想把SVM也看成了神经网络,该思想把神经网络的输入层到最后一层隐含层的部分或者SVM核函数映射的部分都看成了从输入空间到一个新的空间的转换,然后,BP会将误差反向传播更新权值使得误差最小化,而SVM则力求找到最大分界间隔的分界面,将新空间映射到输出空间,从这个角度来看,SVM确实可以看成是一种神经网络。
ELM最初算法就如上所述,从2004年至今,后来的学者对其进行了很多改进,主要包括对输入层和隐含层权值随即确定权值的优化、求解隐含层和输出层权值的优化(使得ELM更适应于噪声数据集)、核函数ELM以及加入了正则化项的损失函数(求解结构风险而不再是经验风险)、ELM和其他方法相结合等。ELM为神经网络的结构设计提供了一个新的思路,使我们更好地理解神经网络,但是还有很多问题需要解决,比如隐含层节点个数的确定,正则化项的选择等等。作为一个性能很好的机器,我们也可以将其应用到诸多交叉学科的应用中。

paper 103:ELM算法的更多相关文章

  1. paper 84:机器学习算法--随机森林

    http://www.cnblogs.com/wentingtu/archive/2011/12/13/2286212.html中一些内容 基础内容: 这里只是准备简单谈谈基础的内容,主要参考一下别人 ...

  2. 【uva 177】Paper Folding(算法效率--模拟)

    P.S.模拟真の难打,我花了近乎三小时!o(≧口≦)o 模拟题真的要思路清晰!分块调试. 题意:著名的折纸问题:给你一张很大的纸,对折以后再对折,再对折--每次对折都是从右往左折,因此在折了很多次以后 ...

  3. paper 102:极限学习机(Extreme Learning Machine)

    原文地址:http://blog.csdn.net/google19890102/article/details/18222103   极限学习机(Extreme Learning Machine) ...

  4. 使用Cross-validation (CV) 调整Extreme learning Machine (ELM) 最优参数的实现(matlab)

    ELM算法模型是最近几年得到广泛重视的模型,它不同于现在广为火热的DNN. ELM使用传统的三层神经网络,只包含一个隐含层,但又不同于传统的神经网络.ELM是一种简单易用.有效的单隐层前馈神经网络SL ...

  5. ELM极限学习机

    极限学习机(Extreme Learning Machine) ELM,是由黄广斌提出来的求解神经网络算法.ELM最大的特点是对于传统的神经网络,尤其是单隐层前馈神经网络(SLFNs),ELM比传统的 ...

  6. Redis内存管理中的LRU算法

    在讨论Redis内存管理中的LRU算法之前,先简单说一下LRU算法: LRU算法:即Least Recently Used,表示最近最少使用页面置换算法.是为虚拟页式存储管理服务的,是根据页面调入内存 ...

  7. 快速上手RaphaelJS-Instant RaphaelJS Starter翻译(一)

       (目前发现一些文章被盗用的情况,我们将在每篇文章前面添加原文地址,本文源地址:http://www.cnblogs.com/idealer3d/p/Instant_RaphaelJS_Start ...

  8. 实施vertex compression所遇到的各种问题和解决办法

    关于顶点压缩,好处是可以减少带宽,一定程度提高加载速度,可以提高约5-10%的fps,特别是mobile上,简单描述就是: 压缩之前(32字节) position float3 12normal fl ...

  9. 基于2-channel network的图片相似度判别

    一.相关理论 本篇博文主要讲解2015年CVPR的一篇关于图像相似度计算的文章:<Learning to Compare Image Patches via Convolutional Neur ...

随机推荐

  1. javaweb之框架标签(day1 框架标签的使用)

    框架标签 <frameset> --rows:按照行进行划分<frameset rows='80,*'> --rows:按照列进行划分<frameset cols='80 ...

  2. java线程的简单实现及方法

    java线程: 线程是一个程序内部的顺序控制流. cpu实际上在一个时间点上,只执行一个.只不过我们把cpu分成了多个时间片,由于速度很快,我们看起来像是多个线程.. 就像你的时间分成几片,这样 整体 ...

  3. 概率论与数理统计ppt链接

    http://e-learning.ecust.edu.cn/G2S/Template/View.aspx?courseId=26835&topMenuId=72352&action= ...

  4. HTML静态网页 标签、表格

    HTML静态网页: 打开DREAMWEAVER,新建HTML,如下图: body的属性: bgcolor 页面背景色 background  背景壁纸.图片 text  文字颜色 topmargin ...

  5. c#语句 随堂练习2

    1.方程ax²+bx+c=0是一元二次方程,求根. 2.输入一个年份 ,判断是不是闰年.(能被4整除但不能被100整除的年份是闰年,有的世纪年也是闰年) 3.标准体重:男士体重=身高-100±3:女士 ...

  6. asp.net mvc Post上传文件大小限制

    最近发现在项目中使用jQuery.form插件上传比较大的文件时,上传不了,于是改了下web.config的上传文件最大限制. <configuration> <system.web ...

  7. window dos命名

    dos命令从c盘进入d盘c:\>d:敲回车 >dir 查看文件夹中文件运行java程序,最好先进入文件夹:然后javac Hello.javajava Hello

  8. I/O存取方式的形象比喻

    I/O存取有三种方式:可编程I/O.中断驱动I/O.DMA,分别可理解如下: 下面以老师向班里同学收发作业来类比I/O存取,办公室表示内存,即,I操作表示:老师向学生收作业,然后存放到办公室里:O操作 ...

  9. IOS网络第二天 - 02-异步HTTP请求block回调 解析

    ************** #import "HMViewController.h" #import "MBProgressHUD+MJ.h" @interf ...

  10. IOS第13天(1,私人通讯录,登陆功能,界面的跳转传值,自定义cell,编辑界面)

    ******HMLoginViewController 登陆的界面 #import "HMLoginViewController.h" #import "MBProgre ...