HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)
题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量。
析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量有多少,再结合nlogn的LIS,
就能搞定这个题目了。
代码如下:
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} LL dp[25][12][1200];
int a[25];
int k; LL dfs(int pos, int num, int s, bool is, bool ok){
if(!pos) return k == num;
if(num > k) return 0;
LL &ans = dp[pos][k][s];
if(!ok && ans >= 0) return ans; LL res = 0;
int n = ok ? a[pos] : 9;
for(int i = 0; i <= n; ++i){
if(is && !i) res += dfs(pos-1, num, s, is, ok && i == n);
else if((1<<i) > s) res += dfs(pos-1, num+1, s|(1<<i), is && !i, ok && i == n);
else if((1<<i)&s) res += dfs(pos-1, num, s, is && !i, ok && i == n);
else for(int j = i+1; j <= 9; ++j)
if((1<<j)&s){ res += dfs(pos-1, num, (s^(1<<j))|(1<<i), is && !i, ok && i == n); break; } }
if(!ok) ans = res;
return res;
} LL solve(LL n){
int len = 0;
while(n){
a[++len] = n % 10;
n /= 10;
}
return dfs(len, 0, 0, true, true);
} int main(){
memset(dp, -1, sizeof dp);
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
LL n, m;
scanf("%I64d %I64d %d", &m, &n, &k);
printf("Case #%d: %I64d\n", kase, solve(n) - solve(m-1));
}
return 0;
}
HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)的更多相关文章
- HDU 4352 XHXJ's LIS(数位dp&状态压缩)
题目链接:[kuangbin带你飞]专题十五 数位DP B - XHXJ's LIS 题意 给定区间.求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k. 思路 一个数的上升子序列最大长度为 ...
- HDU 4352 XHXJ's LIS 数位dp lis
目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...
- hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)
#define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...
- Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)
D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...
- HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- HDU 4352 XHXJ's LIS HDU(数位DP)
HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...
- hdu 4352 XHXJ's LIS (数位dp+状态压缩)
Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...
- 【状态压缩DP】HDU 4352 XHXJ'S LIS
题目大意 Vjudge链接 定义一个数的内部LIS长度表示这个数每个数位构成的序列的LIS长度,给出区间\([l,r]\),求区间内内部LIS长度为\(k\)的数的个数. 输入格式 第一行给出数据组数 ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
随机推荐
- 第二章 伪分布式安装hadoop hbase
安装单机模式的hadoop无须配置,在这种方式下,hadoop被认为是一个单独的java进程,这种方式经常用来调试.所以我们讲下伪分布式安装hadoop. 我们继续上一章继续讲解,安装完先试试SSH装 ...
- netcore中使用log4net日志
第一.控制台程序中使用log4net static void Main(string[] args) { ILoggerRepository repository = LoggerManager.C ...
- ODPS基础
遇到一个项目需求是统计128张分库分表的数据表记录的最大id,通过单表查询计算非常费时,也无法应对分表数更多的情况,因此考虑到通过odps进行任务发布和运算 在云端 http://d2.alibaba ...
- java.lang.NoClassDefFoundError: org/jaxen/JaxenException解决方法
在使用dom4j的xpath时出现java.lang.NoClassDefFoundError: org/jaxen/JaxenException的异常,原因是dom4j引用了jaxen jar包,而 ...
- Linux6系统安装
- preprocess
1,宏定义,有参宏,无参宏,宏定义实现的是定义一个符号常量; 条件编译3种方式,文件包含含义; 不带参数的宏定义;既用一个指定的的标识符来代替一个字符串; #define RUIY 10000000 ...
- 关于where和having的直观理解
一,查询区别 where是对前面select的字段没有要求,直接查询库表的 having是对前面的select的字段有要求,字段已经select出来的 可以用having进行处理 select id, ...
- 微软TechNet关于TLS的细节的描述
https://technet.microsoft.com/en-us/library/cc785811.aspx TLS协议太复杂了,RFC太长没时间看,这篇还可以,好歹知道个大概. 想知道全部细节 ...
- REST 规范
DRF之REST规范介绍及View请求流程分析 DRF之解析器组件及序列化组件 DRF - 序列化组件(GET/PUT/DELETE接口设计).视图优化组件 DRF之权限认证频率组件 DRF之注册器响 ...
- VUE 初步学习
Vue 简单的总结一 Vue 简单的总结二 Vue 简单的总结三 Vue 简单的总结四(项目流程) Vue 简单的总结五 Vue(6)- Vue-router进阶.单页面应用(SPA)带来的问题 Vu ...