题意:给定一个区间,让你求在这个区间里的满足LIS为 k 的数的数量。

析:数位DP,dp[i][j][k] 由于 k 最多是10,所以考虑是用状态压缩,表示 前 i 位,长度为 j,状态为 k的数量有多少,再结合nlogn的LIS,

就能搞定这个题目了。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
//#include <tr1/unordered_map>
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std;
//using namespace std :: tr1; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f;
const LL LNF = 0x3f3f3f3f3f3f;
const double PI = acos(-1.0);
const double eps = 1e-8;
const int maxn = 1e6 + 5;
const LL mod = 1e9 + 7;
const int N = 1e6 + 5;
const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};
const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};
const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
inline LL gcd(LL a, LL b){ return b == 0 ? a : gcd(b, a%b); }
inline int gcd(int a, int b){ return b == 0 ? a : gcd(b, a%b); }
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline int Min(int a, int b){ return a < b ? a : b; }
inline int Max(int a, int b){ return a > b ? a : b; }
inline LL Min(LL a, LL b){ return a < b ? a : b; }
inline LL Max(LL a, LL b){ return a > b ? a : b; }
inline bool is_in(int r, int c){
return r >= 0 && r < n && c >= 0 && c < m;
} LL dp[25][12][1200];
int a[25];
int k; LL dfs(int pos, int num, int s, bool is, bool ok){
if(!pos) return k == num;
if(num > k) return 0;
LL &ans = dp[pos][k][s];
if(!ok && ans >= 0) return ans; LL res = 0;
int n = ok ? a[pos] : 9;
for(int i = 0; i <= n; ++i){
if(is && !i) res += dfs(pos-1, num, s, is, ok && i == n);
else if((1<<i) > s) res += dfs(pos-1, num+1, s|(1<<i), is && !i, ok && i == n);
else if((1<<i)&s) res += dfs(pos-1, num, s, is && !i, ok && i == n);
else for(int j = i+1; j <= 9; ++j)
if((1<<j)&s){ res += dfs(pos-1, num, (s^(1<<j))|(1<<i), is && !i, ok && i == n); break; } }
if(!ok) ans = res;
return res;
} LL solve(LL n){
int len = 0;
while(n){
a[++len] = n % 10;
n /= 10;
}
return dfs(len, 0, 0, true, true);
} int main(){
memset(dp, -1, sizeof dp);
int T; cin >> T;
for(int kase = 1; kase <= T; ++kase){
LL n, m;
scanf("%I64d %I64d %d", &m, &n, &k);
printf("Case #%d: %I64d\n", kase, solve(n) - solve(m-1));
}
return 0;
}

HDU 4352 XHXJ's LIS (数位DP+LIS+状态压缩)的更多相关文章

  1. HDU 4352 XHXJ&#39;s LIS(数位dp&amp;状态压缩)

    题目链接:[kuangbin带你飞]专题十五 数位DP B - XHXJ's LIS 题意 给定区间.求出有多少个数满足最长上升子序列(将数看作字符串)的长度为k. 思路 一个数的上升子序列最大长度为 ...

  2. HDU 4352 XHXJ's LIS 数位dp lis

    目录 题目链接 题解 代码 题目链接 HDU 4352 XHXJ's LIS 题解 对于lis求的过程 对一个数列,都可以用nlogn的方法来的到它的一个可行lis 对这个logn的方法求解lis时用 ...

  3. hdu4352 XHXJ's LIS(数位DP + LIS + 状态压缩)

    #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully reading the entire ...

  4. Codeforces Round #235 (Div. 2) D. Roman and Numbers (数位dp、状态压缩)

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  5. HDU 4352 - XHXJ's LIS - [数位DP][LIS问题]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4352 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...

  6. HDU 4352 XHXJ's LIS HDU(数位DP)

    HDU 4352 XHXJ's LIS HDU 题目大意 给你L到R区间,和一个数字K,然后让你求L到R区间之内满足最长上升子序列长度为K的数字有多少个 solution 简洁明了的题意总是让人无从下 ...

  7. hdu 4352 XHXJ's LIS (数位dp+状态压缩)

    Description #define xhxj (Xin Hang senior sister(学姐)) If you do not know xhxj, then carefully readin ...

  8. 【状态压缩DP】HDU 4352 XHXJ'S LIS

    题目大意 Vjudge链接 定义一个数的内部LIS长度表示这个数每个数位构成的序列的LIS长度,给出区间\([l,r]\),求区间内内部LIS长度为\(k\)的数的个数. 输入格式 第一行给出数据组数 ...

  9. [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)

    [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...

随机推荐

  1. linux 文件结构

    Linux常见的目录解释: 目录 描述 / 根目录 /bin 做为基础系统所需要的最基础的命令就是放在这里.比如 ls.cp.mkdir等命令:功能和/usr/bin类似,这个目录中的文件都是可执行的 ...

  2. i2c驱动程序全面分析,从adapter驱动程序到设备驱动程序

    开发板    :mini2440 内核版本:linux2.6.32.2 驱动程序参考:韦东山老师毕业班i2c 内容概括: 1.adapter client 简介    2.adapter 驱动框架   ...

  3. php redis安装使用

    下载redis-windows-master.解压点击redis-server.exe运行服务端 redis设置访问密码 修改redis.conf文件配置, # requirepass foobare ...

  4. IBM AIX创建lv

    #lsvg 查看当前有哪些vgrootvgvgdb02vgdb01datavg#lslv maindb_index 查看maindb_index这个lv 位于哪个vg上,新的lv也要与之相同.LOGI ...

  5. spring 声明式事务的坑 @Transactional 注解

    1.首先环境搭建,jar 我就不写了,什么一些spring-core.jar spring-beans.jar spring-content.jar 等等一些包 省略..... 直接上图: sprin ...

  6. 指向“**js/shop.js”的 <script> 加载失败

    指向“”的 <script> 加载失败 找了半天没找到原因 原来是meta里面的 csp Content-Security-Policy <meta http-equiv=" ...

  7. [z]计算机架构中Cache的原理、设计及实现

    前言 虽然CPU主频的提升会带动系统性能的改善,但系统性能的提高不仅仅取决于CPU,还与系统架构.指令结构.信息在各个部件之间的传送速度及存储部件的存取速度等因素有关,特别是与CPU/内存之间的存取速 ...

  8. leetcode819

    public class Solution { public string MostCommonWord(string paragraph, string[] banned) { //"a, ...

  9. AES 加密填充 PKCS #7

    使用算法AES的时候,涉及到数据填充的部分,数据的填充有很多种方案,用的比较多的有pkcs#5,pkcs#7, 下面的都是从网上转来的.结论就是在AES 的使用中,pkcs#5填充和pkcs#7填充没 ...

  10. js添加对象数组

    json 数组也是数组  var jsonstr="[{'name':'a','value':1},{'name':'b','value':2}]"; var jsonarray  ...