【BZOJ】2301: [HAOI2011]Problem b
【题意】于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。n,a,b,c,d,k<=50000。
【算法】数论(莫比乌斯反演)
【题解】差分转化为询问有多少数对(x,y)满足x,y互素,1<=x<=n/k,1<=y<=m/k。
令f[x]表示gcd(a,b)=x的数对个数,F[x]表示满足 x | gcd(a,b) 的数对个数,则F[x]=Σx|df(d)。
易得F[x]=(n/x)*(m/x),那么根据莫比乌斯反演定理,f(x)=Σx|dμ(d/n)*F(d)=Σx|dμ(d/n)*(n/d)*(m/d)。
当x=1时,f(1)=Σμ(d)*(n/d)*(m/d),d=1~min(n,m),单次询问复杂度O(n)。
继续优化,n/d至多只有2*√n个取值,只要枚举这些取值后运用μ的前缀和(预处理)快速计算。
具体方法是:当前取值为n/i时,最小为i,最大为pos=n/(n/i),这m/(m/i)取min即可。
复杂度O(n√n)。
#include<cstdio>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=;
int miu[maxn],prime[maxn],tot,s[maxn],n;
bool mark[maxn];
void pre(int n){
miu[]=;
for(int i=;i<=n;i++){
if(!mark[i])miu[i]=-,prime[++tot]=i;
for(int j=;j<=tot&&i*prime[j]<=n;j++){
mark[i*prime[j]]=;
miu[i*prime[j]]=-miu[i];
if(i%prime[j]==){miu[i*prime[j]]=;break;}
}
}
for(int i=;i<=n;i++)s[i]=s[i-]+miu[i];
}
ll solve(int n,int m){
ll ans=;int pos=;
for(int i=;i<=min(n,m);i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=1ll*(s[pos]-s[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
scanf("%d",&n);
pre();
for(int i=;i<=n;i++){
int a,b,c,d,k;
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
a--;c--;a/=k;b/=k;c/=k;d/=k;
printf("%lld\n",solve(b,d)-solve(b,c)-solve(a,d)+solve(a,c));
}
return ;
}
尝试从套路的角度来推导ans=Σx|dμ(d/n)*(n/d)*(m/d)
★当x=1时,Σd|xμ(x)=1。所以gcd(a,b)=1等价于Σd|a&&d|bμ(d)。——①
$$ans=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)=k]$$
由(i,j)=k等价于(i/k,j/k)=1可以得到:——②
$$ans=\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}[gcd(i,j)=1]$$
下一步代入经典gcd转μ,得到:
$$ans=\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}\sum_{d|i\cap d|j}\mu (d)$$
套路化地改为枚举gcd,得到:——③
$$ans=\sum_{d=1}^{min(\frac{n}{k},\frac{m}{k})}\mu (d)\sum_{i=1}^{\frac{n}{k}}\sum_{j=1}^{\frac{m}{k}}[d|i\cap d|j]$$
最后部分满足条件的数对都可以除以d,就可以压缩上标直接计算了,即:——④
$$ans=\sum_{d=1}^{min(\frac{n}{k},\frac{m}{k})}\mu (d)\left \lfloor \frac{n}{kd} \right \rfloor\left \lfloor \frac{m}{kd} \right \rfloor$$
【BZOJ】2301: [HAOI2011]Problem b的更多相关文章
- 【BZOJ】2301: [HAOI2011]Problem b(莫比乌斯+分块)
http://www.lydsy.com/JudgeOnline/problem.php?id=2301 和这题不是差不多的嘛--[BZOJ]1101: [POI2007]Zap(莫比乌斯+分块) 唯 ...
- 【BZOJ】3339: Rmq Problem & 3585: mex(线段树+特殊的技巧)
http://www.lydsy.com/JudgeOnline/problem.php?id=3585 好神的题. 但是!!!!!!!!!!!!!!我线段树现在要开8倍空间才能过!!!!!!!!!! ...
- 【动态规划】bzoj2298: [HAOI2011]problem a
建模超级妙…… Description 一次考试共有n个人参加,第i个人说:“有ai个人分数比我高,bi个人分数比我低.”问最少有几个人没有说真话(可能有相同的分数) Input 第一行一个整数n,接 ...
- 【BZOJ】【2301】problem b
莫比乌斯反演/容斥原理 Orz PoPoQQQ PoPoQQQ莫比乌斯函数讲义第一题. for(i=1;i<=n;i=last+1){ last=min(n/(n/i),m/(m/i)); …… ...
- Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...
- bzoj 2301: [HAOI2011]Problem b
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Submit: 3757 Solved: 1671 [Submit] ...
- BZOJ 2301: [HAOI2011]Problem b 莫比乌斯反演
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 1007 Solved: 415[Submit][ ...
- BZOJ 2301: [HAOI2011]Problem b( 数论 )
和POI某道题是一样的... http://www.cnblogs.com/JSZX11556/p/4686674.html 只需要二维差分一下就行了. 时间复杂度O(MAXN + N^1.5) - ...
- BZOJ 2301 [HAOI2011]Problem b (分块 + 莫比乌斯反演)
2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 6519 Solved: 3026[Submit] ...
随机推荐
- rsyslog配置文件详解(rsyslog.conf)
# rsyslog configuration file # For more information see /usr/share/doc/rsyslog-*/rsyslog_conf.html # ...
- 【beta】Scrum站立会议第4次....11.6
小组名称:nice! 组长:李权 成员:于淼 刘芳芳韩媛媛 宫丽君 项目内容:约跑app(约吧) 时间: 12:00——12:30 地点:传媒西楼220室 本次对beta阶段的需求进行更新如下: ...
- 模板CodeTemplate
/** * @author:dubbo@xxxx.com * @date: ${date} ${time} * @version: V1.0 * @review: dubbo/${date} ${ti ...
- CentOS yum 安装LAMP PHP5.4版本
CentOS yum 安装LAMP PHP5.4版本 [日期:2015-06-04] 来源:Linux社区 作者:rogerzhanglijie [字体:大 中 小] Linux系统版本:C ...
- Filter2D卷积运算
图像处理中的卷积运算一般都用来平滑图像.尖锐图像求边缘等等.主要看你选择什么样的核函数了.现在核函数很多,比如高斯平滑核函数,sobel核函数,canny核函数等等.这里举一个sobel核函数的例子来 ...
- javascript之彻底理解valueOf, toString
参与运算的都是简单类型(一般就字符串和数字), 复杂类型是不参与运算的. ***当对象(非简单类型)用作键时,会先调用toString()方法把对象转化成字符串 var a = {}, b = ...
- Spring注解原理
一.注解的基本概念和原理及其简单实用 注解(Annotation)提供了一种安全的类似注释的机制,为我们在代码中添加信息提供了一种形式化得方法,使我们可以在稍后某个时刻方便的使用这些数据(通过解析注解 ...
- 【C++】为多态基类声明virtual析构函数
来自<Effective C++>条款07:为多态声明virtual析构函数 当derived class对象经由一个base class指针被删除,而该base class带着一个non ...
- BZOJ 2131 圈地计划(最小割+黑白染色)
类似于happiness的一道题,容易想到最小割的做法. 但是不同的是那一道题是相邻的如果相同则有收益,这题是相邻的不同才有收益. 转化到建图上面时,会发现,两个相邻的点连的边容量会是负数.. 有一种 ...
- 【bzoj3560】DZY Loves Math V 欧拉函数
题目描述 给定n个正整数a1,a2,…,an,求 的值(答案模10^9+7). 输入 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,…,an. 输出 仅一行答案. 样例输入 3 ...