从小到大加数,根据加入的位置转移,裸的背包DP。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,k,f[N][N],g[N][N]; int main(){
scanf("%d%d",&n,&k);
f[][]=; rep(i,,k) g[][i]=;
rep(i,,n){
f[i][]=g[i][]=;
rep(j,,k){
f[i][j]=(g[i-][j]-((j-i>=)?g[i-][j-i]:)+mod)%mod;
g[i][j]=(g[i][j-]+f[i][j])%mod;
}
}
printf("%d\n",f[n][k]);
return ;
}

[BZOJ2431][HAOI2009]逆序对数列(DP)的更多相关文章

  1. BZOJ2431:[HAOI2009]逆序对数列(DP,差分)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  2. [bzoj2431][HAOI2009][逆序对数列] (dp计数)

    Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆 ...

  3. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  4. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  5. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  6. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  7. 【bzoj2431】[HAOI2009]逆序对数列 dp

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的 数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这 ...

  8. bzoj2431: [HAOI2009]逆序对数列(DP)

    f[i][j]前i个数有j个逆序对的数量 f[i][j]=sigma(f[i-1][j-k]){1<=k<=i} 维护一个前缀和即可 #include<iostream> #i ...

  9. bzoj2431: [HAOI2009]逆序对数列

    dp. f[i][j]表示放置第i个数有j个逆序对的方案数. s[i][j]维护前缀和(f[i][0]~f[i][j]). 状态转移方程 f[i][j]=s[i-1][j]-s[i-1][max(j- ...

随机推荐

  1. 漫谈JWT

    一.JWT简介[对于了解JWT的童鞋,可以直接跳到最后] 咱们就不弄那些乱七八糟的概念,就简单点说一下JWT是什么.有什么和能干什么 1. JWT概念和作用 JWT全称为json web token, ...

  2. 大聊PYthon----生成器

    再说迭代器与生成器之前,先说一说列表生成式 列表生成式 什么是列表生成式呢? 这个非常简单! 先看看普通青年版的! >>> a [0, 1, 2, 3, 4, 5, 6, 7, 8, ...

  3. xshell连接Ubuntu虚拟机

    Ubuntu系统 1,安装ssh sudo apt-get install openssh-server 2,启动ssh进程 /etc/init.d/ssh start 3,查看进程信息 ps -e ...

  4. HTML标签学习之路-001

    1.html的注释 <!--这里是注释内容--> <!--代表注释内容的开始 -->代表注释内容结束 注释部分,不会被浏览器输出,只是作为代码的说明,供开发者查阅 2.HTML ...

  5. sklearn逻辑回归(Logistic Regression)类库总结

    class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_inter ...

  6. 访问公网WebService服务

    接下来,我们演示如何访问公网webservice服务. 我们以访问 http://www.webxml.com.cn/zh_cn/index.aspx 为例,主要演示手机号码归属地查询服务(使用说明书 ...

  7. mysql 配置数据库主从同步

    参考:https://www.cnblogs.com/kevingrace/p/6256603.html http://www.51testing.com/html/00/130600-243651. ...

  8. Linux打补丁的一些问题

    linuxpatchlinux内核文档commandheader类unix操作系统有一个很有趣的特性就是源代码级的补丁包.在windows上我们打补丁都是运行一个可执行的程序,然后就可以把补丁打完了, ...

  9. 洛谷P1876开灯 题解

    题目传送门 这道题目是道数学题(下面也写了),所以仔细研究发现:N轮之后,只有是小于N的完全平方数的灯能亮着.所以接下来就好办了: #include<bits/stdc++.h> usin ...

  10. django rest_framework比较完整的自定义实现样例

    里面有自定义的更新策略, 序列化时,考虑nest及显示. 很有参考意义. 然后,前端,可以考虑用angular.js或vue.js实现. 每次以token进行认证. url.py router = D ...