题目描述

Once there was a pig, which was very fond of treasure hunting. One day, when it woke up, it found itself in a strange land of treasure. As for how to come in, or how to go out, no ways to know. Sad.

The good news is, it was lucky that it got the treasure map.

But there is a bad news too, this map is an encrypted map.

You can think of it as a matrix of R*C. Each grid is a number of Hexadecimal(十六进制), that is the number is between {‘0’,’1’,…’9’,’A’,’B’,…,’F’}, and the 4 length Binary number(4位二进制数) corresponding is the real treasure map.

For example, the number '0' on the encrypted graph represents the actual map ‘0000’, and '1' represents the actual map ‘0001’, ... The 'A' represents the actual map ‘1010’, and 'F' represents the actual map ‘1111’.

The owner of the treasure is very clever, he build some insuperable wall in the treasure to avoid stealing, we use ‘0’ to describe it. Obviously ‘1’ indicated that this grid bury exactly one diamond.

The pig can only walk up to four adjacent squares in the upper, lower, left and right directions at a time. Wherever it goes, it will dig out the diamond in this grid(if there is diamond buried in the grid) and put the diamond in its own package.

Though it has got the map, but doesn't know where it is in the peach blossom trap now, that means it could be at any ‘.’ in the matrix. It finds you smart to tell it how many diamonds it will get at most.

输入描述:

Multiple groups of test case. (no more than 10 groups. )
The first line of each group contains two numbers R and C,(0<=R, C<=3000), representing the number of rows and the number of columns of peach blossom trap, respectively. Stop the program when R and C are both 0.
Then there are next R lines, each line contains C characters, describe as above.
It is guarantee all the input is legal.

输出描述:

For each test case, output the answer on each line, representing the most number of diamonds can be obtained by the pig.
示例1

输入

5 2
E8
23
52
78
01 3 1
0
4
0 0 0

输出

6
1

说明

In the first example, the real treasure map is:
11101000
00100011
01010010
01111000
00000001
So it is possible to dig out 6 diamonds at most.

题解

$bfs$,压位。

主要是要想办法省内存,$01$矩阵可以压位,每$32$位$01$串拿一个$int$表示即可。

然后就是普通的$bfs$,队列的内存峰值也只有$1000$个位置的数量级。

#include <bits/stdc++.h>
using namespace std; const int maxn = 3000 + 10;
int r, c;
char s[maxn];
unsigned int m[maxn][450];
int f[maxn * 4];
int st[maxn], cnt; int dir[4][2] = {
{-1, 0},
{1, 0},
{0, -1},
{0, 1},
}; int out(int x, int y) {
if(x < 0 || x >= r) return 1;
if(y < 0 || y >= 4 * c) return 1;
return 0;
} int Get(int x, int y) {
unsigned int p = (unsigned)(1 << (y % 32));
if(m[x][y / 32] & p) return 1;
return 0;
} void Set(int x, int y) {
unsigned int p = (unsigned)(1 << (y % 32));
m[x][y / 32] = m[x][y / 32] ^ p;
} int main() {
while(~scanf("%d%d", &r, &c)) {
if(r == 0 && c == 0) break;
for(int i = 0; i < r; i ++) {
for(int j = 0; j < 400; j ++) {
m[i][j] = 0;
}
}
for(int i = 0; i < r; i ++) {
scanf("%s", s);
int sz = 0;
for(int j = 0; j < c; j ++) {
int num;
if(s[j] >= '0' && s[j] <= '9') num = s[j] - '0';
else num = s[j] - 'A' + 10; cnt = 0;
for(int k = 0; k < 4; k ++) {
st[cnt ++] = (num & (1 << k)) ? 1 : 0;
}
for(int k = 3; k >= 0; k --) {
f[sz ++] = st[k];
}
}
for(int j = 0; j < sz; j ++) {
m[i][j / 32] = m[i][j / 32] + (unsigned)(f[j] * (1 << (j % 32)));
}
} int ans = 0; for(int i = 0; i < r; i ++) {
for(int j = 0; j < 4 * c; j ++) {
if(Get(i, j) == 0) continue;
int sum = 0;
queue<int> Q;
Q.push(i * 4 * c + j);
Set(i, j);
while(!Q.empty()) {
int h = Q.front();
int x = h / (4 * c);
int y = h % (4 * c);
Q.pop();
sum ++;
for(int i = 0; i < 4; i ++) {
int tx = x + dir[i][0];
int ty = y + dir[i][1];
if(out(tx, ty)) continue;
if(Get(tx, ty) == 0) continue;
Q.push(tx * 4 * c + ty);
Set(tx, ty);
}
}
ans = max(ans, sum);
if(ans > r*c*2) break;
}
if(ans > r*c*2) break;
} printf("%d\n", ans);
}
return 0;
}

  

湖南大学ACM程序设计新生杯大赛(同步赛)J - Piglet treasure hunt Series 2的更多相关文章

  1. 湖南大学ACM程序设计新生杯大赛(同步赛)A - Array

    题目描述 Given an array A with length n  a[1],a[2],...,a[n] where a[i] (1<=i<=n) is positive integ ...

  2. 湖南大学ACM程序设计新生杯大赛(同步赛)L - Liao Han

    题目描述 Small koala special love LiaoHan (of course is very handsome boys), one day she saw N (N<1e1 ...

  3. 湖南大学ACM程序设计新生杯大赛(同步赛)B - Build

    题目描述 In country  A, some roads are to be built to connect the cities.However, due to limited funds, ...

  4. 湖南大学ACM程序设计新生杯大赛(同步赛)I - Piglet treasure hunt Series 1

    题目描述 Once there was a pig, which was very fond of treasure hunting. The treasure hunt is risky, and ...

  5. 湖南大学ACM程序设计新生杯大赛(同步赛)E - Permutation

    题目描述 A mod-dot product between two arrays with length n produce a new array with length n. If array ...

  6. 湖南大学ACM程序设计新生杯大赛(同步赛)D - Number

    题目描述 We define Shuaishuai-Number as a number which is the sum of a prime square(平方), prime cube(立方), ...

  7. 湖南大学ACM程序设计新生杯大赛(同步赛)H - Yuanyuan Long and His Ballons

    题目描述 Yuanyuan Long is a dragon like this picture?                                     I don’t know, ...

  8. 湖南大学ACM程序设计新生杯大赛(同步赛)G - The heap of socks

    题目描述 BSD is a lazy boy. He doesn't want to wash his socks, but he will have a data structure called ...

  9. 湖南大学ACM程序设计新生杯大赛(同步赛)C - Do you like Banana ?

    题目描述 Two endpoints of two line segments on a plane are given to determine whether the two segments a ...

随机推荐

  1. 用js实现千位分隔符

    function mm(num) { return num && num .toString() .replace(/(\d)(?=(\d{3})+\.)/g, function($0 ...

  2. 【Ural】1519. Formula 1 插头DP

    [题目]1519. Formula 1 [题意]给定n*m个方格图,有一些障碍格,求非障碍格的哈密顿回路数量.n,m<=12. [算法]插头DP [题解]<基于连通性状态压缩的动态规划问题 ...

  3. 导出数据excel表--身份证号后三位是0--〉还原

    导出数据excel表的身份证号后三位是0,怎么办? 数据导出前,在身份证号前加任意符号即可 例如: 结果

  4. 推箱子 BFS

    [编程题] 推箱子 大家一定玩过“推箱子”这个经典的游戏.具体规则就是在一个N*M的地图上,有1个玩家.1个箱子.1个目的地以及若干障碍,其余是空地.玩家可以往上下左右4个方向移动,但是不能移动出地图 ...

  5. MFC CListCtrl 将一个列表的选中项添加到另一个列表

    MFC CListCtrl 将一个列表的选中项添加到另一个列表, 用VC6.0实现: 简单记录一下自己的学习历程, 和大家分享,如果对你有用,我很高兴. 1.新建一个基于对话框的工程(Dialog-B ...

  6. 59、有用过with statement吗?它的好处是什么?

    python中的with语句是用来干嘛的?有什么作用? with语句的作用是通过某种方式简化异常处理,它是所谓的上下文管理器的一种 用法举例如下: with open('output.txt', 'w ...

  7. laravel学习教程整理

    百度传课:https://chuanke.baidu.com/v5847462-219167-1421398.html

  8. FastStoneCapture(FSCapture)录屏、剪辑教程

    FastStoneCapture软件编辑视频的使用方法: http://www.tudou.com/programs/view/2eD-s5HP1xw/

  9. 深入理解Spring系列之二:BeanDefinition解析

    转载 https://mp.weixin.qq.com/s?__biz=MzI0NjUxNTY5Nw==&mid=2247483814&idx=1&sn=ddf49931d55 ...

  10. Bootstrap文件上传组件:bootstrap fileinput

    为了上传预览pdf与图片特用此插件. 源码以及API地址: bootstrap-fileinput源码:https://github.com/kartik-v/bootstrap-fileinput ...