题目传送门

HH去散步

题目描述

HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。

现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径

输入输出格式

输入格式:

第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。

接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但 不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。

输出格式:

一行,表示答案。

输入输出样例

输入样例#1:

4 5 3 0 0
0 1
0 2
0 3
2 1
3 2
输出样例#1:

4

说明

对于30%的数据,N ≤ 4,M ≤ 10,t ≤ 10。

对于100%的数据,N ≤ 50,M ≤ 60,t ≤ 2^30,0 ≤ A,B


  分析:

  这题的思路其实和[TJOI2017]可乐有些相似。

  如果没有那条不会立刻沿着刚刚走来的路走回的限制,那么就直接邻接矩阵搞一波快速幂就行了。但是加了这条限制之后,我们以点作矩阵的元似乎无从下手,那么不如换一下,把边作为矩阵的元。

  以边作为矩阵的元,那么所求的结果就变成了与起点相连的所有边到达与终点相连的所有边的方案数。构造矩阵的时候我们就可以先用邻接链表存边,把一条无向边拆成两条有向边,然后在构造矩阵的时候用点来连接两条边,并且判断这两条边是否属于同一条无向边,如果是,在构造矩阵的时候就不用把这条边算上。然后就是矩阵加速转移了。

  Code:

  

//It is made by HolseLee on 11th Sep 2018
//Luogu.org P1224
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int mod=;
int n,m,t,sta,ed,head[],cnte,ans;
struct Edge {
int to,nxt;
Edge() {}
Edge(int _x,int _y): to(_x),nxt(_y) {}
}e[];
struct Matrix {
int a[][],n,m; Matrix() {memset(a,,sizeof(a));n=m=;}
Matrix(int b[][]) {memcpy(a,b,sizeof(a));} friend Matrix operator * (const Matrix x,const Matrix y) {
Matrix ret;
ret.n=x.n, ret.m=y.m;
for(int i=; i<=x.n; ++i)
for(int j=; j<=y.m; ++j)
for(int k=; k<=x.m; ++k)
ret.a[i][j]=(ret.a[i][j]+(x.a[i][k]*y.a[k][j])%mod)%mod;
return ret;
}
}M,T; inline int read()
{
char ch=getchar(); int num=; bool flag=false;
while( ch<'' || ch>'' ) {
if( ch=='-' ) flag=true; ch=getchar();
}
while( ch>='' && ch<='' ) {
num=num*+ch-''; ch=getchar();
}
return flag ? -num : num;
} inline void add(int x,int y)
{
e[++cnte]=Edge(y,head[x]);
head[x]=cnte;
} inline int get(int x)
{
return (x&) ? x+ : x-;
} int main()
{
n=read(); m=read(); t=read()-;
sta=read()+, ed=read()+;
memset(head,-,sizeof(head));
int x,y;
for(int i=; i<=m; ++i) {
x=read()+, y=read()+;
add(x,y), add(y,x);
}
for(int j=; j<=cnte; ++j){
x=e[j].to;
for(int i=head[x]; i!=-; i=e[i].nxt) {
if( i==get(j) ) continue;
T.a[j][i]++;
}
}
for(int i=head[sta]; i!=-; i=e[i].nxt) M.a[][i]++;
M.n=, M.m=T.n=T.m=cnte;
while( t ) {
if( t& ) M=M*T;
t>>=, T=T*T;
}
for(int i=head[ed]; i!=-; i=e[i].nxt)
ans=(ans+M.a[][get(i)])%mod;
printf("%d",ans);
return ;
}

洛谷P2151 [SDOI2009] HH去散步 [矩阵加速]的更多相关文章

  1. [bzoj1875] [洛谷P2151] [SDOI2009] HH去散步

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  2. 洛谷 P2151 [SDOI2009]HH去散步

    题目链接 思路 如果没有不能走上一条边的限制,很显然就是dp. 设f[i][j]表示到达i点走了j步的方案数,移到k点可以表示为f[k][j+1]+=f[i][j]. 如果有限制的话,可以考虑用边表示 ...

  3. 洛谷2151[SDOI2009]HH去散步(dp+矩阵乘法优化)

    一道良好的矩阵乘法优化\(dp\)的题. 首先,一个比较\(naive\)的想法. 我们定义\(dp[i][j]\)表示已经走了\(i\)步,当前在点\(j\)的方案数. 由于题目中限制了不能立即走之 ...

  4. 「 洛谷 」P2151 [SDOI2009]HH去散步

    小兔的话 欢迎大家在评论区留言哦~ HH去散步 题目限制 内存限制:125.00MB 时间限制:1.00s 标准输入 标准输出 题目知识点 动态规划 \(dp\) 矩阵 矩阵乘法 矩阵加速 矩阵快速幂 ...

  5. bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

    1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走, ...

  6. P2151 [SDOI2009]HH去散步

    题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢 ...

  7. 【bzoj1875】[SDOI2009]HH去散步 矩阵乘法

    题目描述 一张N个点M条边的无向图,从A走到B,要求:每一次不能立刻沿着上一次的边的反方向返回.求方案数. 输入 第一行:五个整数N,M,t,A,B. N表示学校里的路口的个数 M表示学校里的路的条数 ...

  8. BZOJ1875 [SDOI2009]HH去散步 矩阵

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1875 题意概括 在一个无向图(有重边无自环)中走,不能在经过连续经过某一条边2次. 现在走t步,问 ...

  9. [luogu2151 SDOI2009] HH去散步 (矩阵快速幂)

    传送门 题目描述 HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH ...

随机推荐

  1. libuv移植到ios

    libuv官网只提供了os x的编译方法,没有IOS的.既然os x和ios的系统内核差不多,并且编译工具都是xcode,那我们只要重新指定cpu架构,就可以编译出ios版的了. 1.安装python ...

  2. CF851 C 暴力

    给出n个5维下的点,求点a不与其它任意的b,c重合,向量ab,ac的夹角都为钝角,这样的点个数,并打印它们. 转换二维下的求角度的函数为五维的,而且由于要求角度大于90度,在二维情况下最多有4个点,也 ...

  3. Python学习笔记(三十三)常用内置模块(2)collections_namedtuple_deque_defaultdict_OrderedDict_Counter

    摘抄自:https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001431953239 ...

  4. java多线程机制1(线程创建的两种方式)

    进程:正在运行的程序.(即程序在内存中开辟了一片空间) 线程:是进程的执行单元. 一个进程至少包含了一个多个线程. 多线程是不是可以提高效率:多线程可以合理的利用系统的资源,提高效率是相对的.因为cp ...

  5. jq消除网页滚动条

    网页有些时候需要能滚动的效果,但是不想要滚动条,我就遇到了这样的需求.自己用jq写了一个垂直滚动条. 纯css也可以实现 .box::-webkit-scrollbar{display:none} 但 ...

  6. 【日期控件】JQueryUI的datepicker日期控件

    在输入日期的时候我们经常需要日期控件,jQueryUI的datapicker就是一个很好的日期控件. 1.简单的datepicker控件 目录结构:(要将images图片放到css目录下面)

  7. php sprintf格式化注入

    URL:http://efa4e2c2b8df4ce69454639f4e3727071652c31167f341a4.game.ichunqiu.com/ 简单的说就是sprintf中%1$\'会将 ...

  8. 64_q2

    qt3-3.3.8b-69.fc26.x86_64.rpm 13-Feb-2017 01:37 3591906 qt3-MySQL-3.3.8b-69.fc26.i686.rpm 13-Feb-201 ...

  9. Linux下多路径multipath配置【转】

    一.multipath在redhat 6.2中的基本配置: 1. 通过命令:lsmod |grep dm_multipath  检查是否正常安装成功.如果没有输出说明没有安装那么通过yum功能安装一下 ...

  10. 为什么需要学UML建模

    今天在看<设计模式>的时候,看到了许多的UML模型图,案例中作者用极少的代码却能讲清楚讲好设计模式的背景和思想,抽象成一张张的UML图就能很好的review和复盘,这对于在工作中习惯用代码 ...