洛谷P1199 三国游戏
题目描述
小涵很喜欢电脑游戏,这些天他正在玩一个叫做《三国》的游戏。
在游戏中,小涵和计算机各执一方,组建各自的军队进行对战。游戏中共有 N 位武将(N为偶数且不小于 4),任意两个武将之间有一个“默契值”,表示若此两位武将作为一对组合作战时,该组合的威力有多大。游戏开始前,所有武将都是自由的(称为自由武将,一旦某个自由武将被选中作为某方军队的一员,那么他就不再是自由武将了),换句话说,所谓的自由武将不属于任何一方。
游戏开始,小涵和计算机要从自由武将中挑选武将组成自己的军队,规则如下:小涵先从自由武将中选出一个加入自己的军队,然后计算机也从自由武将中选出一个加入计算机方的军队。接下来一直按照“小涵→计算机→小涵→……”的顺序选择武将,直到所有的武将被双方均分完。然后,程序自动从双方军队中各挑出一对默契值最高
的武将组合代表自己的军队进行二对二比武,拥有更高默契值的一对武将组合获胜,表示两军交战,拥有获胜武将组合的一方获胜。
已知计算机一方选择武将的原则是尽量破坏对手下一步将形成的最强组合,它采取的具体策略如下:任何时刻,轮到计算机挑选时,它会尝试将对手军队中的每个武将与当前每个自由武将进行一一配对,找出所有配对中默契值最高的那对武将组合,并将该组合中的自由武将选入自己的军队。 下面举例说明计算机的选将策略,例如,游戏中一共有 6 个武将,他们相互之间的默契值如下表所示:

双方选将过程如下所示:

小涵想知道,如果计算机在一局游戏中始终坚持上面这个策略,那么自己有没有可能必
胜?如果有,在所有可能的胜利结局中,自己那对用于比武的武将组合的默契值最大是多
少? 假设整个游戏过程中,对战双方任何时候均能看到自由武将队中的武将和对方军队的武将。为了简化问题,保证对于不同的武将组合,其默契值均不相同。
输入输出格式
输入格式:
输入文件名为 sanguo.in,共 N 行。
第一行为一个偶数 N,表示武将的个数。
第 2 行到第 N 行里,第(i+1)行有(Ni)个非负整数,每两个数之间用一个空格隔
开,表示 i 号武将和 i+1,i+2,……,N 号武将之间的默契值(0≤默契值≤1,000,000,000)。
输出格式:
输出文件 sanguo.out 共 1 或 2 行。
若对于给定的游戏输入,存在可以让小涵获胜的选将顺序,则输出 1,并另起一行输出
所有获胜的情况中,小涵最终选出的武将组合的最大默契值。
如果不存在可以让小涵获胜的选将顺序,则输出 0。
输入输出样例
6
5 28 16 29 27
23 3 20 1
8 32 26
33 11
12
1
32
8
42 24 10 29 27 12 58
31 8 16 26 80 6
25 3 36 11 5
33 20 17 13
15 77 9
4 50
19
1
77
说明
【数据范围】
对于 40%的数据有 N≤10。
对于 70%的数据有 N≤18。
对于 100%的数据有 N≤500。
分析:电脑每次都会拆散第一大的组合,那么我们一定可以选到第二大的组合,那么电脑的最佳选择就是第三大的组合了,所以小涵必胜,只需要输出第二大的默契值就好了.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int n, d[][], max1, max2, ans = ; int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
{
for (int j = i + ; j <= n; j++)
{
scanf("%d", &d[i][j]);
d[j][i] = d[i][j];
}
d[i][i] = ;
}
for (int i = ; i <= n; i++)
{
max1 = max2 = ;
for (int j = ; j <= n;j++)
if (d[i][j] > max1)
{
max2 = max1;
max1 = d[i][j];
}
else
if (d[i][j] > max2)
max2 = d[i][j];
if (max2 > ans)
ans = max2;
}
printf("1\n%d\n", ans); return ;
}
洛谷P1199 三国游戏的更多相关文章
- 洛谷 P1199 三国游戏 解题报告
P1199 三国游戏 题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战.游戏中共有\(N\)位武将(\(N\)为 ...
- 【贪心】洛谷 P1199 三国游戏 题解
这个题尽管题目长,主要还是证明贪心的正确性(与博弈关系不大) 题目描述 小涵很喜欢电脑游戏,这些天他正在玩一个叫做<三国>的游戏. 在游戏中,小涵和计算机各执一方,组建各自的军队进行对战 ...
- 洛谷 P1199 三国游戏
参考:Solution_ID:17 题解 更新时间: 2016-11-13 21:01 这道题要求最后得到的两方的默契值最大的武将,小涵的默契值大于计算机,首先,我们这个解法获胜的思路是,每个武将对应 ...
- 洛谷 P1199 三国游戏 题解
每日一题 day18 打卡 Analysis 贪心 假如小A先选最大的[5,4],虽然电脑必须选一个破坏, 我们可以理解为5和4都属于小A的,假如后面未被破坏的最大值无论是和5相关还是和4相关,必然还 ...
- 洛谷P1199三国游戏
题目 博弈论+贪心. 由于我们是先手,所以我们其实是必赢的,而且其实选完前两次,就已经结束了,因为接下来选的每一次其实都没有我们前几次选的好.而且又因为机器人会把我们想选的最好的拿走,那我们就只能拿走 ...
- 洛谷P1199 三国游戏——题解
题目传送 显然,在这样的数据范围下搜索是没希望的了.好好分析一下,发现小涵时不可能拿到与一个武将最默契的另一个武将了.所以考虑一下默契值次大的一对武将. 显然,对每一个武将来说,小涵是可以拿到默契值次 ...
- 洛谷P1999三国游戏
题目:https://www.luogu.org/problemnew/show/P1199 仔细想想,两方都拿不到每个武将的配对中最大的: 本来想的是如果有武将a,b,对应最大ma,mb,次大ca, ...
- 洛谷 P2197 nim游戏
洛谷 P2197 nim游戏 题目描述 甲,乙两个人玩Nim取石子游戏. nim游戏的规则是这样的:地上有n堆石子(每堆石子数量小于10000),每人每次可从任意一堆石子里取出任意多枚石子扔掉,可以取 ...
- 洛谷 P1965 转圈游戏
洛谷 P1965 转圈游戏 传送门 思路 每一轮第 0 号位置上的小伙伴顺时针走到第 m 号位置,第 1 号位置小伙伴走到第 m+1 号位置,--,依此类推,第n − m号位置上的小伙伴走到第 0 号 ...
随机推荐
- JavaScript学习笔记(四)——DOM
第五章 网页交互——文本对象模型[Document object model] 1 简单介绍DOM,dom是将html与javascript进行交互的工具. [使用innerHTML时注意:html中 ...
- JavaScript 高级之面向对象
1. 对象属性及方法 创建对象的方式 <script> //创建对象的方式一 var obj = {}; //创建对象的方式一 var obj = new Object(); </s ...
- Javascript中Generator(生成器)
阅读目录 Generator的使用: yield yield* next()方法 next()方法的参数 throw方法() return()方法: Generator中的this和他的原型 实际使用 ...
- Alpha发布用户使用报告
此作业要求参见:[https://edu.cnblogs.com/campus/nenu/2018fall/homework/2325] 组名:可以低头,但没必要 组长:付佳 组员:张俊余 李文涛 孙 ...
- Alpha阶段中间产物——GUI Prototype、WBS及PSP
作业地址:https://edu.cnblogs.com/campus/nenu/SWE2017FALL/homework/1224 内容: GUI Prototype 我的书架 我的书架→添加图书 ...
- 软件工程android项目简介
我们的程序名字叫做“有爱”APP,英文名“you i”.意味着you and i,是一款旨在两人聊天,生活日记,记账工具,和对方通知的小软件. 1.首先我们的创意解决了用户什么需求? 答:在当今信息爆 ...
- python apply()函数
python apply函数的具体的含义: apply(func [, args [, kwargs ]]) 函数用于当函数参数已经存在于一个元组或字典中时,间接地调用函数.args是一个包含将要提供 ...
- Jquery获取属性值
jq获取某个标签内的属性值:$("#TeamPerformanceYearUl li:eq(0)").attr('data') jq获取li或者td第一个属性(索引值从零开始)$( ...
- Swift-setValuesForKeysWithDictionary
重写 setValuesForKeysWithDictionary 那么字典中可以有的字段在类中没有对应属性 class Person : NSObject { var age :Int = // 重 ...
- .net 错误处理
第一步在页面中写OnError方法: protected override void OnError(EventArgs e) { Exception ex = Server.GetLastError ...