题目链接:(vjudge)戳我

从今天开始不咕咕地填坑啦

考虑一般的求最大子矩阵和。。。我们一般都是DP,或者直接上悬线法递推。

下面附一个DP的代码:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 310
using namespace std;
int n,m,p,all,ans;
int a[MAXN][MAXN],dp[MAXN],minn[MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(a,0,sizeof(a));
memset(dp,0,sizeof(dp));
memset(minn,0x3f,sizeof(minn));
all=0,ans=-2147483647;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]),all+=a[i][j];
for(int l=1;l<=n;l++)
{
memset(sum,0,sizeof(sum));
for(int r=l;r<=n;r++)
{
for(int i=1;i<=m;i++)
{
sum[i]+=a[r][i];
if(l==r) minn[i]=a[r][i];
else minn[i]=min(minn[i],a[r][i]);
if(i==1) dp[i]=sum[i];
else dp[i]=max(sum[i],dp[i-1]+sum[i]);
ans=max(ans,dp[i]);
}
}
}
printf("%d\n",ans);
}
return 0;
}

然后这个题就是最大子矩阵和的变形。要求必须修改一个。

我们新开一个数组dp2[i]来记录第一维在\([l,r]\)范围内(这个做右端点是需要\(n^2\)枚举的),第二维计算到i的时候,修改了一个位置为p的最大子矩阵和。

因为要修改之后尽量大,所以我们转移的时候需要维护当前\(i\)这一列最小的矩形中最小的元素,那么带修改的自然就是减去这个最小值然后加上p了。

转移最大子矩形和的时候注意分类讨论,分一类为继承前一列,一类为自己新开一个。带修改的还需要分类讨论如果继承前一列,那个带修改的位置到底是在自己这一列还是在前面列中。

然后还有一点就是因为我们修改的这个位置不一定被选入到我们的最大子矩阵和的矩阵里,所以每个不修改的状态也要记录一遍。(当然要特判一下,所有数取满是非法情况要排除掉啦!)

然后每种情况都和ans取一个最大值。

具体看代码吧。代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 310
using namespace std;
int n,m,p,all,ans;
int a[MAXN][MAXN],dp1[MAXN],dp2[MAXN],minn[MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(a,0,sizeof(a));
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
memset(minn,0x3f,sizeof(minn));
all=0,ans=-2147483647;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]),all+=a[i][j];
for(int l=1;l<=n;l++)
{
memset(sum,0,sizeof(sum));
for(int r=l;r<=n;r++)
{
for(int i=1;i<=m;i++)
{
sum[i]+=a[r][i];
if(l==r) minn[i]=a[r][i];
else minn[i]=min(minn[i],a[r][i]);
if(i==1) dp1[i]=sum[i];
else dp1[i]=max(sum[i],dp1[i-1]+sum[i]);
if(i==1) dp2[i]=sum[i]-minn[i]+p;
else dp2[i]=max(dp2[i-1]+sum[i],max(dp1[i-1]+sum[i]-minn[i]+p,sum[i]-minn[i]+p));
if(dp1[i]!=all)
ans=max(ans,dp1[i]);
ans=max(ans,dp2[i]);
printf("l=%d r=%d i=%d ans=%d\n",l,r,i,ans);
}
}
}
printf("%d\n",ans);
}
return 0;
}

hihocoder1580 Matrix的更多相关文章

  1. angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation

    今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:

  2. Pramp mock interview (4th practice): Matrix Spiral Print

    March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...

  3. Atitit Data Matrix dm码的原理与特点

    Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...

  4. Android笔记——Matrix

    转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...

  5. 通过Matrix进行二维图形仿射变换

    Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...

  6. [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素

    Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...

  7. [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径

    Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...

  8. [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

  9. [LeetCode] Search a 2D Matrix 搜索一个二维矩阵

    Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...

随机推荐

  1. 运维自动化工具 Kickstart

    简介: 批量安装操作系统工具之 Kickstart ,RedHat 早前推出的产品( 不多说了,现在都玩 Cobbler 啦 ). 测试环境:CentOS 6.6 x86_64 minimal 一.安 ...

  2. Flying Right POJ - 3038

    有一条从南到北的航线,航线上有N个机场1-n从南到北分布,每天早上飞机从1飞到n,傍晚从n飞到1.有k组乘客,他们数量为M[k],从S飞到E,飞机上只有C个座位,计算每天飞机最多能拉多少乘客 贪心可以 ...

  3. jquery入门 修改网页背景颜色

    我们在浏览一些网站,尤其是一些小说网站的时候,都会有修改页面背景颜色的地方,这个功能使用jquery很容易实现. 效果图: show you code: <!doctype html> & ...

  4. etherboot无盘启动

    2001.10.30 吴峰光 本站提供对无盘启动的支持.本文就此作一简单介绍. 一.概述 无盘启动,更确切的说是网络启动,可算是最为轻松和简便的启动方式了. 目前还很少有人了解它,因为目前的软硬件条件 ...

  5. code1316 文化之旅

    文化之旅的本质是最短路问题,只不过添加了一个文化排斥,仅需要做最短路时判断一下是否排斥即可 因为数据较小,采用了Floyd算法,以下是代码,关键部分附注释: #include<iostream& ...

  6. Fix “Could Not Find This Item” When Deleting in Windows 7

    If you’ve been using Windows for as long as I have, you have probably run into your share of weird e ...

  7. SliceBox

    SliceBox相当于一个轮播图插件,只不过是3D的. 先来查看它能实现的效果: 官网:http://tympanus.net/codrops/2011/09/05/slicebox-3d-image ...

  8. XML(子节点序列化反序列对象)读写

    using System;using System.Collections.Generic;using System.Linq;using System.Text;using System.Threa ...

  9. easyui tabs update 强制刷新页面

    var tab = artDialog.open.origin.$("#tabs").tabs("getTab", "公司评级"); var ...

  10. 用kettle实现数据库迁移之oracle到mysql

    项目完成后,需要把历史oracle 的数据库转移mysql 用kettle 转换数据. 步骤: 1.打开spoon.bat,文件-->新建-->转换,点击“主对象树”,DB连接右键“新建” ...