hihocoder1580 Matrix
题目链接:(vjudge)戳我
从今天开始不咕咕地填坑啦
考虑一般的求最大子矩阵和。。。我们一般都是DP,或者直接上悬线法递推。
下面附一个DP的代码:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 310
using namespace std;
int n,m,p,all,ans;
int a[MAXN][MAXN],dp[MAXN],minn[MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(a,0,sizeof(a));
memset(dp,0,sizeof(dp));
memset(minn,0x3f,sizeof(minn));
all=0,ans=-2147483647;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]),all+=a[i][j];
for(int l=1;l<=n;l++)
{
memset(sum,0,sizeof(sum));
for(int r=l;r<=n;r++)
{
for(int i=1;i<=m;i++)
{
sum[i]+=a[r][i];
if(l==r) minn[i]=a[r][i];
else minn[i]=min(minn[i],a[r][i]);
if(i==1) dp[i]=sum[i];
else dp[i]=max(sum[i],dp[i-1]+sum[i]);
ans=max(ans,dp[i]);
}
}
}
printf("%d\n",ans);
}
return 0;
}
然后这个题就是最大子矩阵和的变形。要求必须修改一个。
我们新开一个数组dp2[i]来记录第一维在\([l,r]\)范围内(这个做右端点是需要\(n^2\)枚举的),第二维计算到i的时候,修改了一个位置为p的最大子矩阵和。
因为要修改之后尽量大,所以我们转移的时候需要维护当前\(i\)这一列最小的矩形中最小的元素,那么带修改的自然就是减去这个最小值然后加上p了。
转移最大子矩形和的时候注意分类讨论,分一类为继承前一列,一类为自己新开一个。带修改的还需要分类讨论如果继承前一列,那个带修改的位置到底是在自己这一列还是在前面列中。
然后还有一点就是因为我们修改的这个位置不一定被选入到我们的最大子矩阵和的矩阵里,所以每个不修改的状态也要记录一遍。(当然要特判一下,所有数取满是非法情况要排除掉啦!)
然后每种情况都和ans取一个最大值。
具体看代码吧。代码如下:
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define MAXN 310
using namespace std;
int n,m,p,all,ans;
int a[MAXN][MAXN],dp1[MAXN],dp2[MAXN],minn[MAXN],sum[MAXN];
int main()
{
#ifndef ONLINE_JUDGE
freopen("ce.in","r",stdin);
#endif
while(scanf("%d%d%d",&n,&m,&p)!=EOF)
{
memset(a,0,sizeof(a));
memset(dp1,0,sizeof(dp1));
memset(dp2,0,sizeof(dp2));
memset(minn,0x3f,sizeof(minn));
all=0,ans=-2147483647;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]),all+=a[i][j];
for(int l=1;l<=n;l++)
{
memset(sum,0,sizeof(sum));
for(int r=l;r<=n;r++)
{
for(int i=1;i<=m;i++)
{
sum[i]+=a[r][i];
if(l==r) minn[i]=a[r][i];
else minn[i]=min(minn[i],a[r][i]);
if(i==1) dp1[i]=sum[i];
else dp1[i]=max(sum[i],dp1[i-1]+sum[i]);
if(i==1) dp2[i]=sum[i]-minn[i]+p;
else dp2[i]=max(dp2[i-1]+sum[i],max(dp1[i-1]+sum[i]-minn[i]+p,sum[i]-minn[i]+p));
if(dp1[i]!=all)
ans=max(ans,dp1[i]);
ans=max(ans,dp2[i]);
printf("l=%d r=%d i=%d ans=%d\n",l,r,i,ans);
}
}
}
printf("%d\n",ans);
}
return 0;
}
hihocoder1580 Matrix的更多相关文章
- angular2系列教程(十一)路由嵌套、路由生命周期、matrix URL notation
今天我们要讲的是ng2的路由的第二部分,包括路由嵌套.路由生命周期等知识点. 例子 例子仍然是上节课的例子:
- Pramp mock interview (4th practice): Matrix Spiral Print
March 16, 2016 Problem statement:Given a 2D array (matrix) named M, print all items of M in a spiral ...
- Atitit Data Matrix dm码的原理与特点
Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...
- Android笔记——Matrix
转自:http://www.cnblogs.com/qiengo/archive/2012/06/30/2570874.html#translate Matrix的数学原理 在Android中,如果你 ...
- 通过Matrix进行二维图形仿射变换
Affine Transformation是一种二维坐标到二维坐标之间的线性变换,保持二维图形的"平直性"和"平行性".仿射变换可以通过一系列的原子变换的复合来 ...
- [LeetCode] Kth Smallest Element in a Sorted Matrix 有序矩阵中第K小的元素
Given a n x n matrix where each of the rows and columns are sorted in ascending order, find the kth ...
- [LeetCode] Longest Increasing Path in a Matrix 矩阵中的最长递增路径
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- [LeetCode] Search a 2D Matrix II 搜索一个二维矩阵之二
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
- [LeetCode] Search a 2D Matrix 搜索一个二维矩阵
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the follo ...
随机推荐
- Linux 硬盘工具之hdparm
安装 yum -y install hdparm 显示硬盘的相关设置 测试硬盘的读取速度 检测IDE硬盘的电源管理模式 [root@cnscn ~]# hdparm -C /dev/sda /dev/ ...
- C# StopWatch的BUG????
//BUG?????? //使用StopWatch测试运行时间 //两段测试A和B //测试结果受测试顺序影响,后测要比先测耗时长了许多 static void TestKeyIntStr() { v ...
- jquery 报错 Uncaught TypeError: Illegal invocation
遇到这个错误 请检查你的ajax提交方法的参数 1 参数是否都有定义 2 参数个数是否一致 3参数是否都有值(******)
- Perl 变量:数组变量
Perl 数组Perl 数组一个是存储标量值的列表变量,变量可以是不同类型.数组变量以 @ 开头.访问数组元素使用 $ + 变量名称 + [索引值] 格式来读取. 1.创建列表.数组1.数组变量以 @ ...
- 【HDU2825】Wireless Password【AC自动机,状态压缩DP】
题意 题目给出m(m<=10)个单词,每个单词的长度不超过10且仅由小写字母组成,给出一个正整数n(n<=25)和正整数k,问有多少方法可以组成长度为n的文本且最少包含k个给出的单词. 分 ...
- Appium+python自动化-Remote远程控制
前言 在第三篇启动app的时候有这样一行代码driver = webdriver.Remote('http://192.168.1.1:4723/wd/hub', desired_caps),很多小伙 ...
- Opencv Convex Hull (凸包)
#include <iostream>#include <opencv2/opencv.hpp> using namespace std;using namespace cv; ...
- 虚拟机硬盘格式的选择:qcow2、 raw等
虚拟机硬盘格式的选择:qcow2. raw等曾经有过一段时间,徘徊于对虚拟机硬盘格式的迷惑中,2009年,终于得出了一些结论(下面的思路基本通用于其他虚拟机) 搜了下,发现大部分用qemu或者kvm的 ...
- 在 CentOS 下源码安装 Xen
http://www.vpsee.com/2010/04/install-xen-on-centos-from-source/ 在 CentOS 源码编译安装 Xen 的过程和在 Debian 上编译 ...
- ubuntu下搭建android开发环境之超顺畅模拟器
如果说android系统的卡,像耳边蚊子让人抓狂,那么android模拟器的卡,那就像午睡时的苍蝇.大概就是一样的恶心~~ 那么,这样的问题对于开发者肯定忍无可忍,我也一样,虽然我还没有入门,但我也一 ...