题目大意:

给你一张n个点,m条边的无向图,每条边都有一个权值,求:1到n的路径权值和的最大值。

题解:

任意一条路径都能够由一条简单路径(任意一条),在接上若干个环构成(如果不与这条简单路径相连就走过去再走回来)。

那么在对这些环进行分类:

1、直接与简单路径相连

相交的重复部分不算就可以了。

2、不与简单路径相连

我们需要跑过去,再跑回来对吧,这样的话,不管我们是怎么跑的,非环的路径对答案的贡献始终为0,(抵消了嘛)。

这样的话,我们只需要用这几个环来构造线性基即可,最后再找个最大值就行啦!

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=50005,M=200005;
ll b[65],dist[M],d[N],z,ans;
int head[N],vet[M],nxt[M],n,m,x,y,tot;
bool vis[N],used[M];
void add(int x,int y,ll z){
nxt[++tot]=head[x];
vet[tot]=y;
head[x]=tot;
dist[tot]=z;
}
void insert(ll x){
for (int i=63;i>=0;i--)
if (x>>i)
if (b[i]) x^=b[i];
else {b[i]=x; break;}
}
void dfs(int u){ //找环
vis[u]=true;
for (int i=head[u];i;i=nxt[i]){
int v=vet[i];
if (!vis[v]){
d[v]=d[u]^dist[i];
dfs(v);
} else
if (!used[i^1]){
used[i^1]=true;
insert(d[u]^d[v]^dist[i]);
}
}
}
int main(){
scanf("%d %d",&n,&m); tot=1;
for (int i=1;i<=m;i++){
scanf("%d %d %lld",&x,&y,&z);
add(x,y,z); add(y,x,z);
}
dfs(1);
ans=d[n];
for (int i=63;i>=0;i--)
if ((ans^b[i])>ans) ans=ans^b[i];
printf("%lld\n",ans);
return 0;
}

[WC 2011]最大Xor和路径的更多相关文章

  1. 【BZOJ 2115】【WC 2011】Xor

    计算1到n的一条路径使得路径上的值xor和最大. 先任意走一条路径计算xor和,然后dfs的时候处理出所有的环的xor和,这样对于所有的环的xor和求线性基,在任意走出的路径的xor和上贪心即可. 正 ...

  2. 【概率DP/高斯消元】BZOJ 2337:[HNOI2011]XOR和路径

    2337: [HNOI2011]XOR和路径 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 682  Solved: 384[Submit][Stat ...

  3. BZOJ2337: [HNOI2011]XOR和路径

    题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...

  4. BZOJ 2337: [HNOI2011]XOR和路径( 高斯消元 )

    一位一位考虑异或结果, f(x)表示x->n异或值为1的概率, 列出式子然后高斯消元就行了 --------------------------------------------------- ...

  5. BZOJ 2337: [HNOI2011]XOR和路径 [高斯消元 概率DP]

    2337: [HNOI2011]XOR和路径 题意:一个边权无向连通图,每次等概率走向相连的点,求1到n的边权期望异或和 这道题和之前做过的高斯消元解方程组DP的题目不一样的是要求期望异或和,期望之间 ...

  6. 【BZOJ2337】Xor和路径(高斯消元)

    [BZOJ2337]Xor和路径(高斯消元) 题面 BZOJ 题解 我应该多学点套路: 对于xor之类的位运算,要想到每一位拆开算贡献 所以,对于每一位拆开来看 好了,既然是按位来算 我们就只需要计算 ...

  7. [HNOI2011]XOR和路径 && [HNOI2013]游走

    [HNOI2011]XOR和路径 题目大意 具体题目:戳我 题目: 给定一个n个点,m条边的有重边.有自环的无向图,其中每个边都有一个边权. 现在随机选择一条1到n的路径,路径权值为这条路径上所有边权 ...

  8. 洛谷 P4151 [WC2011]最大XOR和路径 解题报告

    P4151 [WC2011]最大XOR和路径 题意 求无向带权图的最大异或路径 范围 思路还是很厉害的,上午想了好一会儿都不知道怎么做 先随便求出一颗生成树,然后每条返祖边都可以出现一个环,从的路径上 ...

  9. [WC2011]最大XOR和路径 线性基

    [WC2011]最大XOR和路径 LG传送门 需要充分发掘经过路径的性质:首先注意不一定是简单路径,但由于统计的是异或值,重复走是不会被统计到的,考虑对于任意一条从\(1\)到\(n\)的路径的有效部 ...

随机推荐

  1. Mono生命周期小实验

    今天在写代码的时候,遇到一个初始化顺序问题,于是做了一个实验,下面记录结果: 情景: 1.在 脚本A中实例化 一个预制体,该预制体挂有脚本B 2.在 脚本A中,获取实例化物体 身上的 脚本B,并且设置 ...

  2. 填坑 | .NET core项目远程部署后连接数据库 mysql表大小写敏感问题

    欣喜成功部署了项目之后又遭遇重创hhh,swagger调试数据库,报错 MySql.Data.MySqlClient.MySqlException(0x80004005) 我猜是大小写的问题,一查果然 ...

  3. git 如何比较不同分支的差异

    前两天,良许在做集成的时候碰到了一件闹心事.事情是这样的,良许的一位同事不小心把一个错误的 dev 分支 merge 到了 master 分支上,导致了良许编译不通过.于是,我们需要将版本回退到 me ...

  4. 从一知半解到揭晓Java高级语法—泛型

    目录 前言 探讨 泛型解决了什么问题? 扩展 引入泛型 什么是泛型? 泛型类 泛型接口 泛型方法 类型擦除 擦除的问题 边界 通配符 上界通配符 下界通配符 通配符和向上转型 泛型约束 实践总结 泛型 ...

  5. 手写mybatis框架-增加缓存&事务功能

    前言 在学习mybatis源码之余,自己完成了一个简单的ORM框架.已完成基本SQL的执行和对象关系映射.本周在此基础上,又加入了缓存和事务功能.所有代码都没有copy,如果也对此感兴趣,请赏个Sta ...

  6. format的实现

    var format = function(s, arg0) { var args = arguments; return s.replace(/\{(\d+)\}/ig, function(a, b ...

  7. FFmpeg开发笔记(四):ffmpeg解码的基本流程详解

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  8. python之读取yaml数据

    一.yaml简介 yaml:一种标记语言,专门用来写配置文件. 二.yaml基础语法 区分大小写: 使用缩进表示层级关系: 使用空格键缩进,而非Tab键缩进 缩进的空格数目不固定,只需要相同层级的元素 ...

  9. oracle之时间类型

    Oracle 时间类型及Timezone 20.1 Oracle的六种时间类型 DATETIMESTAMPTIMESTAMP WITH TIME ZONETIMESTAMP WITH LOCAL TI ...

  10. [LeetCode]69. x 的平方根(数学,二分)

    题目 https://leetcode-cn.com/problems/sqrtx 题解 方法一:牛顿迭代法 按点斜式求出直线方程(即过点Xn,f(Xn)),然后求出直线与x轴交点,即为Xn+1: 求 ...