Miller-Rabin 素数检验算法
算法简介
Miller-Rabin算法,这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数。它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法。
费马小定理判质数
\(a^{p - 1}\ ≡\ 1\ mod\ p\)
这个定理在 \(p\) 为质数的时候是成立的,所以我们可以如果要判断 \(p\) 是否是质数,可以 \(rand\) 几个 \(a\) 值然后照着这个式子来算,如果算出来不是 \(1\) 那说明 \(p\) 一定不是质数。
但在我们的自然数中,如果照着这个式子算出来的答案为1,也是有可能不是质数的。更有一类合数,它用费马小定理不管 rand 什么数都判不掉。这类合数称为 Carmichael数(卡迈克尔数),其中一个例子就是561(哇,居然这么小)。
二次探测定理
因为Carmichael数的存在,使得我们难以高效判断质数,所以我们还需要加入第二种判断方法使这种伪算法更优秀!而二次探测无疑就是为我们量身定制的算法,因为它要建立在同余式右边为1的基础上(而我们的费马小定理不正好满足了要求吗?)
若 \(b^2≡1\ mod\ p\) 且 \(p\) 为质数 \(=>\) 则 \(p\) 一定可以被 \(b−1\) 和 \(b+1\) 其中一个整除
这是二次探测定理,原理很简单,我们将上面的同余式左右都减1,根据平方差公式可以得出 \((b−1)(b+1)≡\ 0\ mod\ p\) 这其实就代表着等式左边是模数的倍数,但若模数p是质数,则 \((b−1)\) 和 \((b+1)\) 必定存在一个是 \(p\) 的倍数,所以要么 \(b−1=p\ (b=1)\) 或者 \(b+1=p\ (b=p−1)\) 如果不满足则 \(p\) 一定不是质数!然后我们还可以发现若 \(b=1\) 我们又可以进行新一轮二次探测!
根据这个道理,我们可以进行二次探测:因为 \(a^{p−1}≡1\mod\ p\) 如果 \(p−1\) 为偶数的话就可以化成: \(a^{(\frac{p−1}2)^2}≡1\ mod\ p\) 这样就变成了二次探测的基本式。
typedef long long ll;
typedef unsigned long long ull;
typedef long double lb;
inline ll ksc(ull x, ull y, ll p) { // O(1)快速乘(防爆long long)
return (x * y - (ull)((lb)x / p * y) * p + p) % p;
}
inline ll ksm(ll x, ll y, ll p) { //快速幂
ll res = 1;
while (y) {
if (y & 1) res = ksc(res, x, p);
x = ksc(x, x, p);
y >>= 1;
}
return res;
}
inline bool mr(ll x, ll p) {
if (ksm(x, p - 1, p) != 1) return 0; //费马小定理
ll y = p - 1, z;
while (!(y & 1)) { //一定要是能化成平方的形式
y >>= 1;
z = ksm(x, y, p); //计算
if (z != 1 && z != p - 1) return 0; //不是质数
if (z == p - 1) return 1; //一定要为1,才能继续二次探测
}
return 1;
}
inline bool prime(ll x) {
if (x < 2) return 0;
if (x == 2 || x == 3 || x == 5 || x == 7 || x == 43) return 1;
return mr(2, x) && mr(3, x) && mr(5, x) && mr(7, x) && mr(43, x);
}
这样子加上二次探测之后,明显就能高效很多,基本上卡不了,大概要每 \(10^{10}\) 个数才会出现一个判不掉的,这个概率可以说十分微小,可以忽略!
Miller-Rabin 素数检验算法的更多相关文章
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- POJ2429_GCD & LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】
GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...
- POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...
- HDU1164_Eddy's research I【Miller Rabin素数测试】【Pollar Rho整数分解】
Eddy's research I Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...
- Miller Rabin素数检测
#include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...
- 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)
关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...
- GCDLCM 【米勒_拉宾素数检验 (判断大素数)】
GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
随机推荐
- Python练习题 032:Project Euler 004:最大的回文积
本题来自 Project Euler 第4题:https://projecteuler.net/problem=4 # Project Euler: Problem 4: Largest palind ...
- 1. Spring Boot入门
1.Spring Boot简介 简化Spring应用开发的一个框架 整个Spring技术栈的一个大整合 J2EE开发的一站式解决方案 优点: – 快速创建独立运行的Spring项目以及与主流框架集成 ...
- centos7卸载mariadb安装mysql
卸载mariadb 1. 当前安装列表 rpm -qa | grep mariadb 2.卸载 rpm -e --nodeps mariadb-libs-5.5.56-2.el7.x86_64 3 ...
- ATMEGA的SPI总线 - 第1部分
转自: 1. https://www.yiboard.com/thread-782-1-1.html 2.https://mansfield-devine.com/speculatrix/2018/0 ...
- Visual C++中各种文件的作用(详细)
参考:http://blog.sina.com.cn/s/blog_6975d67c0100r3kx.html DSW:全称是Developer Studio Workspace,最高级别的配置文件, ...
- Systemd的权威用法【译】
如何使用journalctl 来观察和操作systemd的日志 介绍 systemd的一些不错的有点就是它能涉及到进程的系统的日志.对于其他日志工具,日志通常被分布到整个系统中,由不同的daemon和 ...
- Jmeter之『如果(If)控制器』
判断方法 ${__jexl3("${projectName}"=="${targetDir}",)} ${__groovy("${projectNam ...
- Docker安装MongoDB、MySQL、Jenkins、Gitlab、Nginx
Docker安装MongoDB.MySQL.Jenkins.Gitlab.Nginx 安装MongoDB 1. 拉取镜像 $ sudo docker pull mongo 2. 运行镜像 $ sudo ...
- 51Testing和传智播客相比哪个好?
首先我们需要先了解两家企业,51Testing是博为峰旗下的主营业务之一,主要是软件测试人才培训,包含就业培训.企业内训等服务,博为峰除了51Testing这个主营业务之外,还开设了51Code,主要 ...
- day58 Pyhton 框架Django 01
内容回顾 python基础 网路编程 并发编程 数据库 前端 osi7层 tcp/ip 5层模型 应用层 表示层 ...