算法简介

Miller-Rabin算法,这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数。它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法。

费马小定理判质数

\(a^{p - 1}\ ≡\ 1\ mod\ p\)

这个定理在 \(p\) 为质数的时候是成立的,所以我们可以如果要判断 \(p\) 是否是质数,可以 \(rand\) 几个 \(a\) 值然后照着这个式子来算,如果算出来不是 \(1\) 那说明 \(p\) 一定不是质数。

但在我们的自然数中,如果照着这个式子算出来的答案为1,也是有可能不是质数的。更有一类合数,它用费马小定理不管 rand 什么数都判不掉。这类合数称为 Carmichael数(卡迈克尔数),其中一个例子就是561(哇,居然这么小)。

二次探测定理

因为Carmichael数的存在,使得我们难以高效判断质数,所以我们还需要加入第二种判断方法使这种伪算法更优秀!而二次探测无疑就是为我们量身定制的算法,因为它要建立在同余式右边为1的基础上(而我们的费马小定理不正好满足了要求吗?)

若 \(b^2≡1\ mod\ p\) 且 \(p\) 为质数 \(=>\) 则 \(p\) 一定可以被 \(b−1\) 和 \(b+1\) 其中一个整除

这是二次探测定理,原理很简单,我们将上面的同余式左右都减1,根据平方差公式可以得出 \((b−1)(b+1)≡\ 0\ mod\ p\) 这其实就代表着等式左边是模数的倍数,但若模数p是质数,则 \((b−1)\) 和 \((b+1)\) 必定存在一个是 \(p\) 的倍数,所以要么 \(b−1=p\ (b=1)\) 或者 \(b+1=p\ (b=p−1)\) 如果不满足则 \(p\) 一定不是质数!然后我们还可以发现若 \(b=1\) 我们又可以进行新一轮二次探测!

根据这个道理,我们可以进行二次探测:因为 \(a^{p−1}≡1\mod\ p\) 如果 \(p−1\) 为偶数的话就可以化成: \(a^{(\frac{p−1}2)^2}≡1\ mod\ p\) 这样就变成了二次探测的基本式。

typedef long long ll;
typedef unsigned long long ull;
typedef long double lb;
inline ll ksc(ull x, ull y, ll p) { // O(1)快速乘(防爆long long)
return (x * y - (ull)((lb)x / p * y) * p + p) % p;
} inline ll ksm(ll x, ll y, ll p) { //快速幂
ll res = 1;
while (y) {
if (y & 1) res = ksc(res, x, p);
x = ksc(x, x, p);
y >>= 1;
}
return res;
} inline bool mr(ll x, ll p) {
if (ksm(x, p - 1, p) != 1) return 0; //费马小定理
ll y = p - 1, z;
while (!(y & 1)) { //一定要是能化成平方的形式
y >>= 1;
z = ksm(x, y, p); //计算
if (z != 1 && z != p - 1) return 0; //不是质数
if (z == p - 1) return 1; //一定要为1,才能继续二次探测
}
return 1;
} inline bool prime(ll x) {
if (x < 2) return 0;
if (x == 2 || x == 3 || x == 5 || x == 7 || x == 43) return 1;
return mr(2, x) && mr(3, x) && mr(5, x) && mr(7, x) && mr(43, x);
}

这样子加上二次探测之后,明显就能高效很多,基本上卡不了,大概要每 \(10^{10}\) 个数才会出现一个判不掉的,这个概率可以说十分微小,可以忽略!

Miller-Rabin 素数检验算法的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  8. GCDLCM 【米勒_拉宾素数检验 (判断大素数)】

    GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...

  9. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. 【漏洞复现】PHPmyadmin 4.8.1后台Getshell新姿势

    原文地址:https://mp.weixin.qq.com/s/HZcS2HdUtqz10jUEN57aog 早上看到群里在讨论一个新姿势,phpmyadmin后台getshell,不同于以往需要知道 ...

  2. notepad快捷使用

    1.快捷键 参考:https://www.php.cn/tool/notepad/428638.html notepad++是经常使用的一款编辑器软件,在编辑特殊文本的时候(html,java...) ...

  3. matlab做gaussian高斯滤波

    原文链接:https://blog.csdn.net/humanking7/article/details/46826105 核心提示 在Matlab中高斯滤波非常方便,主要涉及到下面两个函数: 函数 ...

  4. matlab find函数使用语法

    find 找到非零元素的索引和值 语法: 1. ind = find(X) 2. ind = find(X, k) 3. ind = find(X, k, 'first') 4. ind = find ...

  5. Tensorflow学习笔记No.4.2

    使用CNN卷积神经网络(2) 使用Tensorflow搭建简单的CNN卷积神经网络对fashion_mnist数据集进行分类 不了解是那么是CNN卷积神经网络的小伙伴可以参考上一篇博客(Tensorf ...

  6. K8S-kubeadm-集群证书续签

    ETCD证书 自签证书颁发机构(CA) ca.crt ca.key etcd集群中相互通信事业的客户端证书 peer.crt peer.key pod中定义Liveness探针事业的客户端证书 hea ...

  7. win10简单方法安装杜比v4音效!win10 1909适用!

    先下载这个! 链接: https://pan.baidu.com/s/1zAOOf-1aCJsjBgy36SiGWA 密码: s9n7 这个是杜比V4文件,257MB大小,适用32位64位系统!下 载 ...

  8. localStorage使用小结

    一.什么是localStorage.sessionStorage 在HTML5中,新加入了一个localStorage特性,这个特性主要是用来作为本地存储来使用的,解决了cookie存储空间不足的问题 ...

  9. CentOS 7的安装与部署 01

    01 虚拟软件的安装与配置 虚拟机(Virtual Machine)指通过软件模拟的具有完整硬件系统功能的.运行在一个完全隔离环境中的完整计算机系统.在实体计算机中能够完成的工作在虚拟机中都能够实现. ...

  10. 【数论】HDU 4143 A Simple Problem

    题目内容 给出一个正整数\(n\),找到最小的正整数\(x\),使之能找到一个整数\(y\),满足\(y^2=n+x^2\). 输入格式 第一行是数据组数\(T\),每组数据有一个整数\(n\). 输 ...