学习博客:

戳这里

戳这里   

戳这里

戳这里

题意:

在一个三维的空间,每个点都有一盏灯,开始全是关的,

现在每次随机选两个点,把两个点之间的全部点,开关都按一遍;问k次过后开着的灯的期望数量;

题解:

肯定不能从随机抽取两个数这里入手的,要求开着的灯的数量就从对每一盏灯,操作结束后灯开着的概率,然后将这些概率求和就是对于整个矩阵到最后开着的灯的数量了,这就把矩阵的问题落实到了对于求每个坐标的概率的问题。

对每个点单独计算贡献,即k次过后每个点开关被按了奇数次的期望

一个点如果被包到所选空间里,那么说明选的两个点,x坐标在这个点两侧,y坐标在这个点两侧,z坐标在这个点两侧;

对于一维的,可以用求出两个点在x这一点两侧的概率。然后三维的只要当成三个一维的乘起来就行了。

E=

求法:

 代码(亦非原创):

 1 #include<bits/stdc++.h>
2
3 using namespace std;
4
5 int t,x,y,z,m;
6
7 int main()
8
9 {
10
11 scanf("%d",&t);
12
13 int cas=0;
14
15 while(t--)
16
17 {
18
19 scanf("%d%d%d%d",&x,&y,&z,&m);
20
21 double ans=0.0;
22
23 for(int i=1;i<=x;i++)
24
25 for(int j=1;j<=y;j++)
26
27 for(int k=1;k<=z;k++)
28
29 {
30
31 double p=0.0;
32
33 p= 1.0-1.0*((x-i)*(x-i)+(i-1)*(i-1))/(x*x);
34
35 p*=1.0-1.0*((y-j)*(y-j)+(j-1)*(j-1))/(y*y);
36
37 p*=1.0-1.0*((z-k)*(z-k)+(k-1)*(k-1))/(z*z);
38
39
40
41 ans+=0.5-0.5*pow(1.0-2*p,1.0*m);
42
43 }
44
45 printf("Case %d: %.11lf\n",++cas,ans);
46
47 }
48
49 return 0;
50
51 }

【非原创】LightOJ - 1284 Lights inside 3D Grid【概率期望】的更多相关文章

  1. LightOJ 1284 - Lights inside 3D Grid 概率/期望/二项式定理

    题意:给你一个长宽高为x,y,z的长方体,里面每个格子放了灯,再给你k次选取任意长方体形状的区块,对其内所有灯开或关操作,初始为关,问亮灯数量的期望值. 题解:首先考虑选取区块的概率,使某个灯在被选取 ...

  2. LightOJ 1284 Lights inside 3D Grid (数学期望)

    题意:在一个三维的空间,每个点都有一盏灯,开始全是关的.现在每次随机选两个点,把两个点之间的全部点,开关都按一遍,问k次过后开着的灯的期望数量: 析:很容易知道,如果一盏灯被按了奇数次,那么它肯定是开 ...

  3. LightOJ - 1284 Lights inside 3D Grid —— 期望

    题目链接:https://vjudge.net/problem/LightOJ-1284 1284 - Lights inside 3D Grid    PDF (English) Statistic ...

  4. LightOJ - 1284 Lights inside 3D Grid (概率计算)

    题面: You are given a 3D grid, which has dimensions X, Y and Z. Each of the X x Y x Z cells contains a ...

  5. LightOJ1284 Lights inside 3D Grid (概率DP)

    You are given a 3D grid, which has dimensions X, Y and Z. Each of the X x Y x Z cells contains a lig ...

  6. Lights inside 3D Grid LightOJ - 1284 (概率dp + 推导)

    Lights inside 3D Grid LightOJ - 1284 题意: 在一个三维的空间,每个点都有一盏灯,开始全是关的, 现在每次随机选两个点,把两个点之间的全部点,开关都按一遍:问k次过 ...

  7. LightOj_1284 Lights inside 3D Grid

    题目链接 题意: 给一个X * Y * Z 的立方体, 每个单位立方体内都有一盏灯, 初始状态是灭的, 你每次操作如下: 1)选择一个点(x1, y1, z1)     再选择一个点(x2, y2, ...

  8. uva 11605 - Lights inside a 3d Grid(概率)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=2652" style=""& ...

  9. 3D Grid Effect – 使用 CSS3 制作网格动画效果

    今天我们想与大家分享一个小的动画概念.这个梦幻般的效果是在马库斯·埃克特的原型应用程序里发现的​​.实现的基本思路是对网格项目进行 3D 旋转,扩展成全屏,并呈现内容.我们试图模仿应用程序的行为,因此 ...

随机推荐

  1. LTH7锂电池充放电IC完整方案

    内容目录: A,LTH7贴片5脚充电芯片    PW4054 1, 单节的锂电池保护电路     单节为3.7V锂电池(也叫4.2V)和3.8V锂电池(也叫4.35V) 2, 单节的锂电池充电电路   ...

  2. 【源码解读】js原生消息提示插件

    效果如下: 关闭message后前后message的衔接非常丝滑,这部分是我比较感兴趣的.带着这个问题先了解下DOM结构,顺便整理下作者的思路. 从DOM里我们可以看到所有的message都在一个容器 ...

  3. ReactRouter的实现

    ReactRouter的实现 ReactRouter是React的核心组件,主要是作为React的路由管理器,保持UI与URL同步,其拥有简单的API与强大的功能例如代码缓冲加载.动态路由匹配.以及建 ...

  4. QTextEdit的paste

    By 鬼猫猫 20130117 http://www.cnblogs.com/muyr/ 背景 QTextEdit中粘贴一大段文字时,EasyDraft中粘贴进去的文字们的格式就乱了,处于无格式.还有 ...

  5. html简单基础

    标签语法 标签的语法: <标签名 属性1="属性值1" 属性2="属性值2"-->内容部分</标签名> <标签名 属性1=&quo ...

  6. 笔记 | pandas之时间序列学习随笔1

    1. 时间序列自动生成 ts = pd.Series(np.arange(1, 901), index=pd.date_range('2010-1-1', periods=900)) 最终生成了从20 ...

  7. STL_map和multimap容器

    一.map/multimap的简介 map是标准的关联式容器,一个map是一个键值对序列,即(key,value)对.它提供基于key的快速检索能力. map中key值是唯一的.集合中的元素按一定的顺 ...

  8. Redis二进制安全

    为了便于理解,举一个例子: 在很多编辑器中,都会默认/n是换行字符,也就意味着一串字符存进去,涉及/n都会做一个默认的转义处理,这在编辑语言中,C也有这个特性,例如字符串Hello,\0 World! ...

  9. etcd 性能优化实践

    https://mp.weixin.qq.com/s/lD2b-DZyvRJ3qWqmlvHpxg 从零开始入门 K8s | etcd 性能优化实践 原创 陈星宇 阿里巴巴云原生 2019-12-16 ...

  10. compare-algorithms-for-heapqsmallest

    Compare algorithms for heapq.smallest « Python recipes « ActiveState Code http://code.activestate.co ...