最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目

题目描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入

第一行一个整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出

一个整数,表示最短Hamilton路径的长度。

样例数据

4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0

思路讲解

作为一道最基础的状压dp ,我们需要掌握它为什么是这么做的。

我作为一名菜鸡,首先想到的就是朴素做法,可是朴素做法它的时间复杂度不允许我通过这道题目。

那我们分析一下朴素做法,从起点到终点每个点只经过一次且求最短路径,,,嗯,最暴力的话就是我们应该把所有的不同种路径全都枚举出来(这个当然就是全排列啦),然后去比较寻找最短路径。

那么这个复杂度是O(n*n !),因为我们枚举所有情况是O(n!),然后每一种路径求和是O(n)的,所以总复杂度是O(n*n!),这个不难分析。

但是我们想了,这么大的复杂度该怎么办呢?  我们再来想想 ,我们的复杂度之所以大是因为  “  n!  ” ,所以我们试图从这里想想办法。

枚举每一位,所有种方案,,,我们可以用二进制,因为二进制同样可以把一组数表示出来,,所以我们想到了用状压去做。

我们定义f(i,j) i 表示的是当前的二进制数  , j 表示的是当前所到达的二进制的第j位

在任意时刻,我们还需要知道当前所处的位置,因此我们用f(i ,j )表示“点被经过的状态” 对应的二进制数位i 且目前处于j时的最短路径。

在任意时刻,有公式f【i,j】=min(i xor (1<<j)  ,    k )+a(k,j)     a数组表示从k到j的路径大小。

i xor  (1<<j ) 表示的是在上一时刻我们所处位置是的路径和

所以公式的意思就明白了  ,就是上一个时刻的路径和与当前时刻的路径和大小的比较

代码实现

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n ;
int a[25][25]; // 代表i到j路径花费
int f[1<<22][25]; //利用二进制的思想 , i表示的是当前的二进制数, j表示的是当前所到达的二进制的第j位
int main(){
scanf("%d",&n);
for(int i=0 ;i<n;i++){
for(int j=0 ;j<n;j++){
scanf("%d",&a[i][j]);
}
} memset(f,127,sizeof(f));
f[1][0] = 0 ;
for(int i=1 ;i<(1<<n);i++){
for(int j=0 ; j<n ;j++){
if((i>>j)&1){ //表示的是我们枚举二进制数的时候 ,这个数中第j位是不是已经被选中了,如果没选过,那我们还用它干嘛。最后的结果不就是n-1个数全部选中嘛
for(int k=0 ;k<n ;k++ ){
if((i>>k)&1){
f[i][j] = min(f[i][j], f[i^(1<<j)][k]+a[k][j]) ;
}
}
}
}
}
cout << f[(1<<n)-1][n-1]<<endl;
return 0 ;
}

最短Hamilton路径(状压dp)的更多相关文章

  1. 完全图的最短Hamilton路径——状压dp

    题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...

  2. 最短Hamilton路径-状压dp解法

    最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...

  3. Acwing-91-最短Hamilton路径(状压DP)

    链接: https://www.acwing.com/problem/content/93/ 题意: 给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hami ...

  4. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  5. CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】

    虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位                                                    \((n >> ...

  6. 最短Hamilton路径【状压DP】

    给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...

  7. 0103 最短Hamilton路径【状压DP】

    0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...

  8. AcWing 最短Hamilton距离 (状压DP)

    题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...

  9. 【状压dp】Hamiton路径

    描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点 ...

随机推荐

  1. 如何使用蓝湖设计稿同时适配PC及移动端

    如何使用蓝湖设计稿同时适配PC及移动端 项目需求: 一套代码同时适配PC及移动端 方案: pc端采用px布局,移动端采用rem布局,通过媒体查询(media query)切换 坑: 尝试过使用post ...

  2. 直播预告:Quadro RTX显卡助力Twinmotion在建筑表现领域火力全开

    新年伊始,泛CG继续起航! 2021年首期泛CG分享会 我们邀请了两位业界大咖一起分享 NVIDIA GPU实时渲染在建筑可视化领域的应用 新的一年,继续相约! 1.嘉宾介绍 魏老师从事设计可视化工作 ...

  3. .net core 和 WPF 开发升讯威在线客服与营销系统:使用 WebSocket 实现访客端通信

    本系列文章详细介绍使用 .net core 和 WPF 开发 升讯威在线客服与营销系统 的过程.本产品已经成熟稳定并投入商用. 在线演示环境:https://kf.shengxunwei.com 注意 ...

  4. MySQL select 子查询的使用

    ### 子查询 >where 这个值是计算出来的 >本质:`在 where 语句中嵌套一个子查询语句` ```sql /*============== 子查询 ============== ...

  5. leetcode 1240. 铺瓷砖(回溯,DFS)

    题目链接 https://leetcode-cn.com/problems/tiling-a-rectangle-with-the-fewest-squares/ 题意: 用尽可能少的正方形瓷砖来铺地 ...

  6. LeetCode590. N叉树的后序遍历

    题目 1 class Solution { 2 public: 3 vector<int>ans; 4 vector<int> postorder(Node* root) { ...

  7. i春秋新春战疫—web—简单的招聘系统

    打开靶机 打开后看到登录界面 利用万能密码,以admin身份登录 登录成功后看到如下界面 在Blank Page界面内发现注入点,抓包 保存在sqlmap目录下test.txt文件夹,使用sqlmap ...

  8. oracle可传输表空间测试

    使用RMAN在恢复表空间的时候,表空间数据文件DBID和恢复数据库的数据文件DBID必须相同 可传输表空间不需要这样,也就是可以快速的把这个表空间插入另一个数据库使用 可传输表空间内的对象必须不依赖与 ...

  9. kafka(二)基本使用

    一.Kafka线上集群部署方案 既然是集群,那必然就要有多个Kafka节点机器,因为只有单台机器构成的kafka伪集群只能用于日常测试之用,根本无法满足实际的线上生产需求. 操作系统: kafka由S ...

  10. 手动验证MySQL Innodb RR级别加锁 需要注意的几个点

    记录几个坑 优化器在表行数比较少的时候 会使用全表扫描,会造成全表所有的行加锁,所以需要使用force index 强制使用索引 来实现gap-lock(间隙锁)的应用 next-lock 加锁 会锁 ...