一、概述

快速排序(quick sort)是一种分治排序算法。该算法首先 选取 一个划分元素(partition element,有时又称为pivot);接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分)、划分元素pivot、right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上;然后分别对left和right两个部分进行 递归排序。

其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一个元素作为划分元素,当然也有更复杂的选择方式;划分 过程根据划分元素重排列表,是快速排序算法的关键所在,该过程的原理示意图如下:

<-- 选取划分元素 -->

<-- 划分过程 -->

<-- 划分结果 -->

快速排序算法的优点是:原位排序(只使用很小的辅助栈),平均情况下的时间复杂度为 O(n log n)。快速排序算法的缺点是:它是不稳定的排序算法,最坏情况下的时间复杂度为 O(n2)。

二、Python实现

1、标准实现

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def stdQuicksort(L):
qsort(L, 0, len(L) - 1)
def qsort(L, first, last):
if first < last:
split = partition(L, first, last)
qsort(L, first, split - 1)
qsort(L, split + 1, last)
def partition(L, first, last):
# 选取列表中的第一个元素作为划分元素
pivot = L[first]
leftmark = first + 1
rightmark = last
while True:
while L[leftmark] <= pivot:
# 如果列表中存在与划分元素pivot相等的元素,让它位于left部分
# 以下检测用于划分元素pivot是列表中的最大元素时,
#防止leftmark越界
if leftmark == rightmark:
break
leftmark += 1
while L[rightmark] > pivot:
# 这里不需要检测,划分元素pivot是列表中的最小元素时,
# rightmark会自动停在first处
rightmark -= 1
if leftmark < rightmark:
# 此时,leftmark处的元素大于pivot,
#而rightmark处的元素小于等于pivot,交换二者
L[leftmark], L[rightmark] = L[rightmark], L[leftmark]
else:
break
# 交换first处的划分元素与rightmark处的元素
L[first], L[rightmark] = L[rightmark], L[first]
# 返回划分元素pivot的最终位置
return rightmark

2、Pythonic实现

# -*- coding: utf-8 -*-
def pycQuicksort(L):
if len(L) <= 1: return L
return pycQuicksort([x for x in L if x < L[0]]) + \
[x for x in L if x == L[0]] + \
pycQuicksort([x for x in L if x > L[0]])

对比 标准实现 可以看出,Pythonic实现 更简洁、更直观、更酷。但需要指出的是,Pythonic实现 使用了Python中的 列表解析 (List Comprehension,也叫列表展开、列表推导),每一次 递归排序 都会产生新的列表,因此失去了快速排序算法本来的 原位排序 的优点。

三、算法测试

if __name__ == '__main__':
L = [54, 26, 93, 17, 77, 31, 44, 55, 20]
M = L[:]
print('before stdQuicksort: ' + str(L))
stdQuicksort(L)
print('after stdQuicksort: ' + str(L))
print('before pycQuicksort: ' + str(M))
print('after pycQuicksort: ' + str(pycQuicksort(M)))

运行结果:

$ python testquicksort.py
before stdQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after stdQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
before pycQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after pycQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]

Python实现的数据结构与算法之快速排序详解的更多相关文章

  1. Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操 ...

  2. Python实现的数据结构与算法之链表详解

    一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循 ...

  3. 用Python实现的数据结构与算法:快速排序

    一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left( ...

  4. 用Python实现的数据结构与算法:开篇

    一.概述 用Python实现的数据结构与算法 涵盖了常用的数据结构与算法(全部由Python语言实现),是 Problem Solving with Algorithms and Data Struc ...

  5. 快速排序详解(C语言/python)

    快速排序详解 介绍: 快速排序于C. A. R. Hoare在1960年提出,是针对冒泡排序的一种改进.它每一次将需要排序的部分划分为俩个独立的部分,其中一个部分的数比的数都小.然后再按照这个方法对这 ...

  6. JVM垃圾回收算法及回收器详解

    引言 本文主要讲述JVM中几种常见的垃圾回收算法和相关的垃圾回收器,以及常见的和GC相关的性能调优参数. GC Roots 我们先来了解一下在Java中是如何判断一个对象的生死的,有些语言比如Pyth ...

  7. 【转】Python的hasattr() getattr() setattr() 函数使用方法详解

    Python的hasattr() getattr() setattr() 函数使用方法详解 hasattr(object, name)判断一个对象里面是否有name属性或者name方法,返回BOOL值 ...

  8. 【python库模块】Python subprocess模块功能与常见用法实例详解

    前言 这篇文章主要介绍了Python subprocess模块功能与常见用法,结合实例形式详细分析了subprocess模块功能.常用函数相关使用技巧. 参考 1. Python subprocess ...

  9. 利用python求解物理学中的双弹簧质能系统详解

    利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...

随机推荐

  1. 数字电路基础(二)TTL与非门输入端悬空和接大电阻的问题

    引言 我们在做那些判断与非门输入输出的时候,常常把输入端悬空和接大电阻作为高电平输入处理,比如下边这一例题: 很显然,我们无法直接从与非门逻辑图中看出其内部工作原理,那我们该如何分析呢?那肯定是去分析 ...

  2. viewPager2的Bug

    在使用数据绑定时,viewpager2的 android:layout_width 必需 match_parent,不然要么显示不正常,要么直接崩溃.

  3. WebStorm下ReactNative代码提示设置

    ReactNative 代码智能提醒  (Webstrom live template) https://github.com/virtoolswebplayer/ReactNative-LiveTe ...

  4. GLSL 着色器程序

    除了使用Cg/HSL 着色器程序以外, OpenGL 着色器语言(GLSL)着色器可以直接书写shader. 然而,使用原生的GLSL只推荐作为测试使用,或者你清晰的知道你的目标平台是 Mac OS ...

  5. ZOJ-2972-Hurdles of 110m(记忆化搜索)

    In the year 2008, the 29th Olympic Games will be held in Beijing. This will signify the prosperity o ...

  6. 安装cnpm设置npm淘宝镜像源

    安装cnpm npm install -g cnpm 验证npm镜像源 npm config get registry 题外话:cnpm和npm区别? cnpm其实就是在npm的基础上将镜像源更换到国 ...

  7. jQuery提供的Ajax方法

    jQuery提供了4个ajax方法:$.get()  $.post()  $.ajax()  $.getJSON() 1.$.get() $.get(var1,var2,var3,var4): 参数1 ...

  8. Solr专题(三)SSM项目整合Solr

    一.环境配置 所需要的jar包: org.apache.solr.solr-solrj maven依赖: <!-- https://mvnrepository.com/artifact/org. ...

  9. 学习STM32的一些记录_创建库函数版本的工程

    1.新建一个文件夹,用于存放MDK的工程所有文件.例如新建文件夹Template. 2.在Template下新建一个USER文件夹,用于存放工程. 3.打开MDK5,新建工程,目录在USER下. 4. ...

  10. Euclid's Game(POJ 2348)

    原题如下: Euclid's Game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10832   Accepted: 4 ...