水平可见直线 bzoj 1007
水平可见直线
【问题描述】
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
【输入格式】
第一行为N(0<N<50000),接下来的N行输入Ai,Bi
【输出格式】
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
【样例输入】
3
-1 0
1 0
0 0
【样例输出】
1 2
题解:
1.对于斜率相同的两条直线截距小的被覆盖。
2.对于斜率不同的三条直线,如果一条直线不可见
那么必定是斜率最大和斜率最小的覆盖另外一条线段
同时斜率最大和斜率最小的直线的交点在另一条线段的上方
根据这个性质,通过排序和单调栈即可维护可见直线。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = , s = ;
char c = getchar();
while('' > c || c > '')
{
if(c == '-') s = -;
c = getchar();
}
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x * s;
}
int n;
struct shape
{
int a, b, i;
};
shape a[];
int s[];
int ans[];
inline bool rule(shape a, shape b)
{
if(a.a != b.a) return a.a > b.a;
return a.b > b.b;
}
inline double Sol(int x, int y)
{
return (double) (a[y].b - a[x].b) / (double) (a[x].a - a[y].a);
}
int main()
{
n = Get();
for(int i = ; i <= n; ++i)
{
a[i].a = Get();
a[i].b = Get();
a[i].i = i;
}
sort(a + , a + + n, rule);
int top = ;
for(int i = ; i <= n; ++i)
{
if(a[i].a == a[s[top]].a) continue;
while(top > && Sol(s[top], i) >= Sol(s[top], s[top - ]))
--top;
s[++top] = i;
ans[top] = a[i].i;
}
sort(ans + , ans + + top);
for(int i = ; i <= top; ++i) printf("%d ", ans[i]);
}
水平可见直线 bzoj 1007的更多相关文章
- AC日记——[HNOI2008]水平可见直线 bzoj 1007
1007 思路: 维护一个下凸壳: 用单调栈来维护这玩意儿: 先将斜率排序: 然后判断栈顶元素和当前元素的交点x是否小于栈顶元素和栈顶上一个元素的交点x: 注意: 人神共愤的精度问题和输出空格问题: ...
- BZOJ 1007 水平可见直线 | 计算几何
BZOJ 1007 水平可见直线 题面 平面直角坐标系上有一些直线,请求出在纵坐标无限大处能看到哪些直线. 题解 将所有直线按照斜率排序(平行的直线只保留最高的直线),维护一个栈,当当前直线与栈顶直线 ...
- 【BZOJ】【1007】【HNOI2008】水平可见直线
计算几何初步 其实是维护一个类似下凸壳的东西?画图后发现其实斜率是单调递增的,交点的横坐标也是单调递增的,所以排序一下搞个单调栈来做就可以了…… 看了hzwer的做法…… /************* ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
随机推荐
- 破解SQLServer for Linux预览版的3.5GB内存限制 (UBUNTU篇)
在上一篇中我提到了如何破解RHEL上SQLServer的内存大小限制,但是Ubuntu上还有一道检查 这篇我将会讲解如何在3.5GB以下内存的Ubuntu中安装和运行SQLServer for Lin ...
- 游戏AI系列内容 咋样才能做个有意思的AI呢
游戏AI系列内容 咋样才能做个有意思的AI呢 写在前面的话 怪物AI怎么才能做的比较有意思.其实这个命题有点大,我作为一个仅仅进入游戏行业两年接触怪物AI还不到一年的程序员来说,来谈这个话题,我想我是 ...
- Redis简单案例(二) 网站最近的访问用户
我们有时会在网站中看到最后的访问用户.最近的活跃用户等等诸如此类的一些信息.本文就以最后的访问用户为例, 用Redis来实现这个小功能.在这之前,我们可以先简单了解一下在oracle.sqlserve ...
- 我大中华微软MVP中国区人才库
刘海峰:国内知名微软开源技术网站51Aspx 创始人,十年以上的Asp.net从业经验,微软MSDN特约讲师.Teched讲师.ImagineCup大赛评委.人大出版社研修班特约讲师,曾多次受邀访问美 ...
- Ubuntu下开启php调试模式,显示报错信息
在Ubuntu下php的缺省设置是不显示错误信息的,如果程序出错会显示“无法处理此请求的错误提示”,这在开发环境下非常不方便. 其实我们只要编辑下apache的配置文件就好 1.我的apache 配置 ...
- Configure a VLAN (on top of a bond) with NetworkManager (nmcli) in RHEL7
not on top of a bond Environment Red Hat Enterprise Linux 7 NetworkManager Issue Need an 802.1q VLAN ...
- 我的MYSQL学习心得(八) 插入 更新 删除
我的MYSQL学习心得(八) 插入 更新 删除 我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得( ...
- 关于《Linux.NET学习手记(8)》的补充说明
早前的一两天<Linux.NET学习手记(8)>发布了,这一篇主要是讲述OWIN框架与OwinHost之间如何根据OWIN协议进行通信构成一套完整的系统.文中我们还直接学习如何直接操作OW ...
- CentOS7下自定义目录安装mono+jexus教程
一.阅读前须知: 1.本文属于安装完Centos7之后的步骤 2.如果还不了解mono,请点击mono 3.本篇主要内容是使用自定义目录安装mono+jexus教程,使用默认目录请查看使用默认目录安装 ...
- Asp.Net跨平台:Ubuntu14.0+Mono+Jexus+Asp.Net
Asp.Net跨平台的文章园子里有很多,这里给自己搭建的情况做一下总结,方便以后查看. 参考网站: http://www.linuxdot.net/(Linux DotNET大本营 ) http ...