水平可见直线 bzoj 1007
水平可见直线
【问题描述】
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=0
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=500000),且n条直线两两不重合.求出所有可见的直线.
【输入格式】
第一行为N(0<N<50000),接下来的N行输入Ai,Bi
【输出格式】
从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
【样例输入】
3
-1 0
1 0
0 0
【样例输出】
1 2
题解:
1.对于斜率相同的两条直线截距小的被覆盖。
2.对于斜率不同的三条直线,如果一条直线不可见
那么必定是斜率最大和斜率最小的覆盖另外一条线段
同时斜率最大和斜率最小的直线的交点在另一条线段的上方
根据这个性质,通过排序和单调栈即可维护可见直线。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = , s = ;
char c = getchar();
while('' > c || c > '')
{
if(c == '-') s = -;
c = getchar();
}
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x * s;
}
int n;
struct shape
{
int a, b, i;
};
shape a[];
int s[];
int ans[];
inline bool rule(shape a, shape b)
{
if(a.a != b.a) return a.a > b.a;
return a.b > b.b;
}
inline double Sol(int x, int y)
{
return (double) (a[y].b - a[x].b) / (double) (a[x].a - a[y].a);
}
int main()
{
n = Get();
for(int i = ; i <= n; ++i)
{
a[i].a = Get();
a[i].b = Get();
a[i].i = i;
}
sort(a + , a + + n, rule);
int top = ;
for(int i = ; i <= n; ++i)
{
if(a[i].a == a[s[top]].a) continue;
while(top > && Sol(s[top], i) >= Sol(s[top], s[top - ]))
--top;
s[++top] = i;
ans[top] = a[i].i;
}
sort(ans + , ans + + top);
for(int i = ; i <= top; ++i) printf("%d ", ans[i]);
}
水平可见直线 bzoj 1007的更多相关文章
- AC日记——[HNOI2008]水平可见直线 bzoj 1007
1007 思路: 维护一个下凸壳: 用单调栈来维护这玩意儿: 先将斜率排序: 然后判断栈顶元素和当前元素的交点x是否小于栈顶元素和栈顶上一个元素的交点x: 注意: 人神共愤的精度问题和输出空格问题: ...
- BZOJ 1007 水平可见直线 | 计算几何
BZOJ 1007 水平可见直线 题面 平面直角坐标系上有一些直线,请求出在纵坐标无限大处能看到哪些直线. 题解 将所有直线按照斜率排序(平行的直线只保留最高的直线),维护一个栈,当当前直线与栈顶直线 ...
- 【BZOJ】【1007】【HNOI2008】水平可见直线
计算几何初步 其实是维护一个类似下凸壳的东西?画图后发现其实斜率是单调递增的,交点的横坐标也是单调递增的,所以排序一下搞个单调栈来做就可以了…… 看了hzwer的做法…… /************* ...
- bzoj 1007 [HNOI2008]水平可见直线(单调栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5120 Solved: 1899[Submit][Sta ...
- BZOJ 1007 [HNOI2008]水平可见直线
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 4453 Solved: 1636[Submit][Sta ...
- 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...
- BZOJ 1007: [HNOI2008]水平可见直线 平面直线
1007: [HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则 ...
随机推荐
- C语言 · 数位分离
问题描述 编写一个程序,输入一个1000 以内的正整数,然后把这个整数的每一位数字都分离出来,并逐一地显示. 输入格式:输入只有一行,即一个1000以内的正整数. 输出格式:输出只有一行,即该整数的每 ...
- Minor【 PHP框架】1.简介
1.1 Minor是什么 Minor是一个简单但是优秀的符合PSR4的PHP框架,It just did what a framework should do. 只做一个框架应该做的,简单而又强大! ...
- JAVA问题集锦Ⅰ
1.Java的日期添加: import java.util.Date ; date=new date();//取时间 Calendar calendar = new GregorianCalendar ...
- fiddler发送post请求
1.指定为 post 请求,输入 url Content-Type: application/x-www-form-urlencoded;charset=utf-8 request body中的参数格 ...
- Android业务组件化之URL Scheme使用
前言: 最近公司业务发展迅速,单一的项目工程不再适合公司发展需要,所以开始推进公司APP业务组件化,很荣幸自己能够牵头做这件事,经过研究实现组件化的通信方案通过URL Scheme,所以想着现在还是在 ...
- ASP.NET Core应用针对静态文件请求的处理[3]: StaticFileMiddleware中间件如何处理针对文件请求
我们通过<以Web的形式发布静态文件>和<条件请求与区间请求>中的实例演示,以及上面针对条件请求和区间请求的介绍,从提供的功能和特性的角度对这个名为StaticFileMidd ...
- Javascript实用方法二
承接上一篇, Object keys object的keys方法能够获取一个给定对象的所有键(key/属性名)并以数组的形式返回.这个方法可以用于键的筛选.匹配等. var basket = { st ...
- ASP.NET Core 1.0 使用 Dapper 操作 MySql(包含事务)
操作 MySql 数据库使用MySql.Data程序包(MySql 开发,其他第三方可能会有些问题). project.json 代码: { "version": "1. ...
- java单向加密算法小结(2)--MD5哈希算法
上一篇文章整理了Base64算法的相关知识,严格来说,Base64只能算是一种编码方式而非加密算法,这一篇要说的MD5,其实也不算是加密算法,而是一种哈希算法,即将目标文本转化为固定长度,不可逆的字符 ...
- 设计模式之结构类模式大PK
结构类模式大PK 结构类模式包括适配器模式.桥梁模式.组合模式.装饰模式.门面模式.享元模式和代理模式.之所以称其为结构类模式,是因 ...