这篇文章有点深度,可能需要一些Lucene或者全文检索的背景。由于我也很久没有看过Lucene了,有些地方理解的不对还请多多指正。

更多内容还请参考整理的ELK教程

关于Term Vectors

额,对于这个专业词汇,暂且就叫做词条向量吧,因为实在想不出什么标准的翻译。说的土一点,也可以理解为关于词的一些统计信息。再说的通俗点,如果想进行全文检索,即从一个词搜索与它相关的文档,总得有个什么记录的信息吧!这就是Term Vectors。

为了不干扰正常的理解,后续就都直接称呼英文的名字吧!免得误导...

先不看这篇文章,如果想要记录全文检索的信息,大家设想一下我们都需要什么内容,就拿"hello world! hello everybody!"来举例。

  • 首先就是这句话都有什么词,"hello","world","everybody"
  • 然后是这些词关联的文档,因为有可能不止上面这一句话。
  • 最后就是词在文档中的位置,比如hello,出现了两次,就需要记录两份位置信息。

关于TermVector在Lucene中的概念,可以参考网络中的一篇文章

使用_termvectors查询词条向量

在Elasticsearch中可以使用_termvectors查询一个文档中词条相关的信息。这个文档可能是es中存储的,也可能是用户直接在请求体中自定义的。这个方法默认是一个实时的统计信息。

常见的语法如:

curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvectors?pretty=true'

也可以指定某个字段,返回这个字段的信息:

curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvectors?fields=text,...'

注意,在Elasticsearch中2.0之前都是使用_termvector,之后都是使用的_termvectors。

返回的信息

使用上面的请求,会返回词条相关的信息:

  • 词条的信息,比如position位置、start_offset开始的偏移值、end_offset结束的偏移值、词条的payLoads(这个主要用于自定义字段的权重)
  • 词条统计,doc_freq、ttf该词出现的次数、term_freq词的频率
  • 字段统计,包含sum_doc_freq该字段中词的数量(去掉重复的数目)、sum_ttf文档中词的数量(包含重复的数目)、doc_count涉及的文档数等等。

默认会返回词条的信息和统计,而不会返回字段的统计。

另外,默认这些统计信息是基于分片的,可以设置dfs为true,返回全部分片的信息,但是会有一定的性能问题,所以不推荐使用。还可以使用field字段对返回的统计信息的字段进行过滤,只返回感兴趣的那部分内容。

例子1:返回存储的Term Vectors信息

首先需要定义一下映射的信息:

curl -s -XPUT 'http://localhost:9200/twitter/' -d '{
"mappings": {
"tweet": {
"properties": {
"text": {
"type": "string",
"term_vector": "with_positions_offsets_payloads",
"store" : true,
"analyzer" : "fulltext_analyzer"
},
"fullname": {
"type": "string",
"term_vector": "with_positions_offsets_payloads",
"analyzer" : "fulltext_analyzer"
}
}
}
},
"settings" : {
"index" : {
"number_of_shards" : 1,
"number_of_replicas" : 0
},
"analysis": {
"analyzer": {
"fulltext_analyzer": {
"type": "custom",
"tokenizer": "whitespace",
"filter": [
"lowercase",
"type_as_payload"
]
}
}
}
}
}'

然后插入两条数据:

curl -XPUT 'http://localhost:9200/twitter/tweet/1?pretty=true' -d '{
"fullname" : "John Doe",
"text" : "twitter test test test "
}' curl -XPUT 'http://localhost:9200/twitter/tweet/2?pretty=true' -d '{
"fullname" : "Jane Doe",
"text" : "Another twitter test ..."
}'

接下来查询一下文档1的Term Vectors信息:

curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvectors?pretty=true' -d '{
"fields" : ["text"],
"offsets" : true,
"payloads" : true,
"positions" : true,
"term_statistics" : true,
"field_statistics" : true
}'

可以得到下面的结果:

{
"_id": "1",
"_index": "twitter",
"_type": "tweet",
"_version": 1,
"found": true,
"term_vectors": {
"text": {
"field_statistics": {
"doc_count": 2,
"sum_doc_freq": 6,
"sum_ttf": 8
},
"terms": {
"test": {
"doc_freq": 2,
"term_freq": 3,
"tokens": [
{
"end_offset": 12,
"payload": "d29yZA==",
"position": 1,
"start_offset": 8
},
{
"end_offset": 17,
"payload": "d29yZA==",
"position": 2,
"start_offset": 13
},
{
"end_offset": 22,
"payload": "d29yZA==",
"position": 3,
"start_offset": 18
}
],
"ttf": 4
},
"twitter": {
"doc_freq": 2,
"term_freq": 1,
"tokens": [
{
"end_offset": 7,
"payload": "d29yZA==",
"position": 0,
"start_offset": 0
}
],
"ttf": 2
}
}
}
}
}

可以看到上面返回了词条的统计信息,以及字段的统计信息。

例子2:轻量级生成Term Vectors

虽然这个字段不是显示存储的,但是仍然可以进行词条向量的信息统计。因为ES可以在查询的时候,从_source中分析出相应的内容。

curl -XGET 'http://localhost:9200/twitter/tweet/1/_termvectors?pretty=true' -d '{
"fields" : ["text", "some_field_without_term_vectors"],
"offsets" : true,
"positions" : true,
"term_statistics" : true,
"field_statistics" : true
}'

关于字段的存储于不存储,可以简单的理解为:

  • 如果字段存储,在ES进行相关的查询时,会直接从存储的字段读取信息
  • 如果字段不存储,ES会从_source中查询分析,提取相应的部分。

由于每次读取操作都是一次的IO,因此如果你不是只针对某个字段、或者_source中的信息太多,那么请优先不存储该字段,即从_source中获取就好。

例子3:手动自定义的文档统计

ES支持对一个用户自定义的文档进行分析,比如:

curl -XGET 'http://localhost:9200/twitter/tweet/_termvectors' -d '{
"doc" : {
"fullname" : "John Doe",
"text" : "twitter test test test"
}
}'

注意如果这个字段没有预先定义映射,那么会按照默认的映射配置进行分析。

例子4:重新定义分析器

可以使用per_field_analyzer参数定义该字段的分析器,这样每个字段都可以使用不同的分析器,分析其词条向量的信息。如果这个字段已经经过存储,那么会重新生成它的词条向量,如:

curl -XGET 'http://localhost:9200/twitter/tweet/_termvectors' -d '{
"doc" : {
"fullname" : "John Doe",
"text" : "twitter test test test"
},
"fields": ["fullname"],
"per_field_analyzer" : {
"fullname": "keyword"
}
}'

会返回:

{
"_index": "twitter",
"_type": "tweet",
"_version": 0,
"found": true,
"term_vectors": {
"fullname": {
"field_statistics": {
"sum_doc_freq": 1,
"doc_count": 1,
"sum_ttf": 1
},
"terms": {
"John Doe": {
"term_freq": 1,
"tokens": [
{
"position": 0,
"start_offset": 0,
"end_offset": 8
}
]
}
}
}
}
}

例子5:字段过滤器

在进行词条向量的信息查询时,可以根据自定义的过滤器,返回感兴趣的信息。

常用的过滤器参数如:

  • max_num_terms 最大的词条数目
  • min_term_freq 最小的词频,比如忽略那些在字段中出现次数小于一定值的词条。
  • max_term_freq 最大的词频
  • min_doc_freq 最小的文档频率,比如忽略那些在文档中出现次数小于一定的值的词条
  • max_doc_freq 最大的文档频率
  • min_word_length 忽略的词的最小长度
  • max_word_length 忽略的词的最大长度
GET /imdb/movies/_termvectors
{
"doc": {
"plot": "When wealthy industrialist Tony Stark is forced to build an armored suit after a life-threatening incident, he ultimately decides to use its technology to fight against evil."
},
"term_statistics" : true,
"field_statistics" : true,
"dfs": true,
"positions": false,
"offsets": false,
"filter" : {
"max_num_terms" : 3,
"min_term_freq" : 1,
"min_doc_freq" : 1
}
}

会返回:

{
"_index": "imdb",
"_type": "movies",
"_version": 0,
"found": true,
"term_vectors": {
"plot": {
"field_statistics": {
"sum_doc_freq": 3384269,
"doc_count": 176214,
"sum_ttf": 3753460
},
"terms": {
"armored": {
"doc_freq": 27,
"ttf": 27,
"term_freq": 1,
"score": 9.74725
},
"industrialist": {
"doc_freq": 88,
"ttf": 88,
"term_freq": 1,
"score": 8.590818
},
"stark": {
"doc_freq": 44,
"ttf": 47,
"term_freq": 1,
"score": 9.272792
}
}
}
}
}

在Elasticsearch中查询Term Vectors词条向量信息的更多相关文章

  1. Elasticsearch中的Term查询和全文查询

    目录 前言 Term 查询 exists 查询 fuzzy 查询 ids 查询 prefix 查询 range 查询 regexp 查询 term 查询 terms 查询 terms_set 查询 t ...

  2. SQL Server中查询数据库及表的信息语句

    /* -- 本文件主要是汇总了 Microsoft SQL Server 中有关数据库与表的相关信息查询语句. -- 下面的查询语句中一般给出两种查询方法, -- A方法访问系统表,适应于SQL 20 ...

  3. elasticsearch中的mapping映射配置与查询典型案例

    elasticsearch中的mapping映射配置与查询典型案例 elasticsearch中的mapping映射配置示例比如要搭建个中文新闻信息的搜索引擎,新闻有"标题".&q ...

  4. ElasticSearch中的简单查询

    前言 最近修改项目,又看了下ElasticSearch中的搜索,所以简单整理一下其中的查询语句等.都是比较基础的.PS,好久没写博客了..大概就是因为懒吧.闲言少叙书归正传. 查询示例 http:// ...

  5. ES 22 - Elasticsearch中如何进行日期(数值)范围查询

    目录 1 范围查询的符号 2 数值范围查询 3 时间范围查询 3.1 简单查询示例 3.2 关于时间的数学表达式(date-math) 3.3 关于时间的四舍五入 4 日期格式化范围查询(format ...

  6. ElasticSearch常用查询命令-kibana中使用

    目录 初学ES 只创建索引(表) 1. 创建 2.创建好后查看索引结构 添加文档(数据) 查看文档(数据) 修改文档数据(数据update) put方式修改 post方式修改 删除文档&索引 ...

  7. elasticsearch中常用的API

    elasticsearch中常用的API分类如下: 文档API: 提供对文档的增删改查操作 搜索API: 提供对文档进行某个字段的查询 索引API: 提供对索引进行操作,查看索引信息等 查看API: ...

  8. elasticsearch中的API

    elasticsearch中的API es中的API按照大类分为下面几种: 文档API: 提供对文档的增删改查操作 搜索API: 提供对文档进行某个字段的查询 索引API: 提供对索引进行操作 查看A ...

  9. Elasticsearch中的相似度模型(原文:Similarity in Elasticsearch)

    原文链接:https://www.elastic.co/blog/found-similarity-in-elasticsearch 原文 By Konrad Beiske 翻译 By 高家宝 译者按 ...

随机推荐

  1. 开始VS 2012中LightSwitch系列的第4部分:太多信息了!使用查询来排序和筛选数据

    [原文发表地址]  Beginning LightSwitch in VS 2012 Part 4: Too much information! Sorting and Filtering Data ...

  2. DownloadManager

    在androi中,volley适合小文件的获取和大并发,如果支持大文件的下载可以用Android原生的DownloadManager.DownloadManager默认支持多线程下载.断点续传等. 基 ...

  3. dojo/dom-class源码学习

    dom-class模块是dojo中对于一个元素class特性的操作(特性与属性的区别),主要方法有: contains 判断元素是否包含某个css class add 为元素添加某个css class ...

  4. .net程序单元测试介绍

    什么是单元测试?为什么要进行单元测试?如需要进一步了解,请移步维基百科. 关于.net程序单元测试的文章,网上已经有很多,但我相信我写的这篇文章的内容是独特的,因为我在网上找了很久,都没找到关于Str ...

  5. IE浏览器不能自动显示PDF文件的解决办法

    今天更新了Adobe的PDF Reader,更新后发现在网页上无法预览PDF文件了,点击PDF的连接,浏览器就会提示下载或者打开,感觉很不爽,经过一番百度,找到了解决办法,在这里分享一下. 打开IE浏 ...

  6. 【面试必备】javascript的原型和继承

    原型.闭包.作用域等知识可以说是js中面试必考的东西,通过你理解的深度也就能衡量出你基本功是否扎实.今天来复习一下javascript的原型和继承,虽说是老生常谈的话题,但对于这些知识,自己亲手写一遍 ...

  7. 分享一个U3D在Runtime显示碰撞盒的插件

    有些时候,我们需要在Game视图显示碰撞盒,比如格斗游戏我要开发碰撞配置的工具,我经常需要看到碰撞盒,今天找了一下,没有发现合适的插件,我还花5美金买了一个插件,结果也只是在scene视图显示,这里我 ...

  8. PS 多次剪裁同一图片

    一个图品里面有两个小图,要分别抠出来. 我以前的做法是,先扣一个,重新打开文件,再扣另外一个. 今天发现一个简单的办法,不用重新打开文件. 就是在扣完第一个的时候,打开历史记录面板,双击 打开 动作, ...

  9. 翻译-Salt与Ansible全方位比较

    原文链接:http://jensrantil.github.io/salt-vs-ansible.html 作者: Jens Rantil 之前某些时候我需要评估配置管理系统.结合从他人得到的意见,我 ...

  10. boost常用记录

    1.BOOST_FOREACH 经常会遍历容器,写for/while循环到手痛,使用BOOST_FOREACH可以减少我们的工作.支持容器vector/list/set/deque/stack/que ...