NOI2013 Day1
NOI2013 Day1
向量内积
题目描述:两个\(d\)维向量\(A\)与\(B\)的内积为其相对应维度的权值的乘积和,现有\(n\)个\(d\)维向量 ,求是否存在两个向量的内积为\(k\)(\(k=2,3\))的倍数。
solution:
考虑\(k=2\),以下为在\((mod 2)\)下运算,设矩阵\(A_1,A_2\),

设矩阵\(P=A_1 * A_2\),若非对角线出现\(0\),则有一对内积为\(0\)
\(P\)对角线上的\(0\)要处理一下
设矩阵\(F\),令\(F_{ii}+P_{ii}=1\),其余为\(0\)
设矩阵\(G\)全为\(1\)
矩阵\(T=G-F-P\),问题转为求是否有一元素在\(T\)中为\(1\)
随机一\(n * 1\)矩阵\(X\),若\(L=T * X,L_{i,1}=1\),则\(T_i\)有一元素为\(1\)
\(L=T * X=G * X-F * X-A_1 * (A_2 * X)\)
第一部分\(O(n)\), 第二部分\(O(nd)\),第三部分\(O(nd)\)。
考虑\(k=3\),\((mod 3)=0,1,2\),因为\(1 * 1=1(mod 3),2 * 2=1(mod 3)\),所以将内积结果平方就可以了。
假设两个\(d\)维向量\(A,B\)
\((A * B)^2=(A_1B_1+A_2B_2+ \cdots +A_dB_d)(A_1B_1+A_2B_2+ \cdots +A_dB_d)\)
\(=(A_1A_1+A_1A_2+ \cdots +A_1A_d+A_2A_1+ \cdots +A_2A_d+ \cdots +A_dA_d)*(B_1B_1+B_1B_2+ \cdots +B_1B_d+B_2B_1+ \cdots +B_2B_d+ \cdots +B_dB_d)\)
所以只需要将\(d\)维扩展到\(d^2\)维即可, 以上操作均在\((mod 3)\)下运算,所以只要\(L\)有非零就可以了。
时间复杂度:\(O(nd^2)\)
树的计数
题目描述:给定一个 DFS 序和 BFS 序,求符合条件的有根树中,树的高度的平均值。
solution:
这题有点求期望值的味道。
根据\(BFS\)序对\(DFS\)序重标号。\(pos[i]\)表示\(i\)在\(DFS\)的第几位,\(deep[i]\)为\(i\)的深度
for (int i=1; i<=n; ++i) w[BFS[i]]=i;
for (int i=1; i<=n; ++i) DFS[i]=w[DFS[i]];
for (int i=1; i<=n; ++i) pos[DFS[i]]=i;
约束条件:
1、\(1\)为根
2、对于\(BFS\)连续的一段\([L, R]\),如果它们在同一层,必有\(pos[L]<pos[L+1]<\cdots<pos[R]\)
3、对于\(DFS\)的相邻两个数\(d[i],d[i+1]\),必有\(deep[d[i+1]]\leq deep[d[i]]+1\)
设\(s[i]\),当\(s[i]=1\)时,\(i\)与\(i+1\)不在同一层,当\(s[i]=0\)时,可能在同一行也可能不在。
转化约束条件:
1、\(s[i]=1\)
2、若\(pos[i+1]<pos[i],s[i]=1\)
3、若\(DFS[i]<DFS[i+1]\),则\(\sum_{j=d[i]}^{d[i+1]-1} s[i]\leq1\)(若\(DFS[i]>DFS[i+1]\),从\(BFS\)得\(deep[d[i+1]]\leq deep[d[i]]\))
用打标记的方法来表示某一段的\(s[i]\)的值是否确定,不确定的\(s[i]\)可以取\(0,1\)对答案的贡献为\(0.5\)。
因为\(i+1\)可以是\(i\)的儿子或兄弟要满足一下条件:
1、\(i+1\)为儿子时,\(i\)为所在层的最后一个,当\(i+1\)做兄弟时,\(i+1\)为所在层最后一个
2、其它不在\(i\)子树或\(i+1\)子树的点的深度均不超过\(i\),否则\(BFS\)有误。
以\(i+1\)为根的子树方案数是一定的,做儿子还是做兄弟只是多\(1\)的影响,所以贡献为\(0.5\)

(蓝框内不能有点,红框方案相同,最左边错误)
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <algorithm>
#include <deque>
#include <queue>
#include <vector>
#include <map>
#include <complex>
using namespace std;
const int maxn=int(2e5)+100;
typedef int arr[maxn];
int n;
arr DFS, BFS, w, x, mat, sum, pos;
double ans;
void init()
{
scanf("%d", &n);
for (int i=1; i<=n; ++i) scanf("%d", &DFS[i]);
for (int i=1; i<=n; ++i) scanf("%d", &BFS[i]);
for (int i=1; i<=n; ++i) w[BFS[i]]=i;
for (int i=1; i<=n; ++i) DFS[i]=w[DFS[i]];
for (int i=1; i<=n; ++i) pos[DFS[i]]=i;
}
void solve()
{
x[1]=1;
//mat用来标记那一段是确定的
mat[1]++; mat[2]--;
for (int i=1; i<n; ++i)
if (pos[i]>pos[i+1])
{
x[i]=1;
mat[i]++; mat[i+1]--;
}
for (int i=1; i<=n; ++i) sum[i]=sum[i-1]+x[i];
for (int i=1; i<n; ++i)
if (DFS[i]<DFS[i+1])
{
if (sum[DFS[i+1]-1]-sum[DFS[i]-1])
{
mat[DFS[i]]++;
mat[DFS[i+1]]--;
}
}
for (int i=1, cnt=0; i<n; ++i)
{
cnt+=mat[i];
if (cnt) ans+=x[i];//cnt>0说明s[i]是确定的
else ans+=0.5;
}
}
int main()
{
freopen("count.in", "r", stdin);
freopen("count.out", "w", stdout);
init();
solve();
printf("%.3lf\n", ans+1.0);
return 0;
}
时间复杂度:\(O(n)\)
NOI2013 Day1的更多相关文章
- NOIp2016 Day1&Day2 解题报告
Day1 T1 toy 本题考查你会不会编程. //toy //by Cydiater //2016.11.19 #include <iostream> #include <cstd ...
- day1
day1.py ][][: ][: ): : ]['lock'] = 0 json.dump(userlist_message, open(userlist, 'w')) break #输错次数到3次 ...
- day1作业--登录入口
作业概述: 编写一个登录入口,实现如下功能: (1)输入用户名和密码 (2)认证成功后显示欢迎信息 (3)输错三次后锁定 流程图: readme: 1.程序配置文件: 黑名单文件blacklist.t ...
- luogu1003铺地毯[noip2011 提高组 Day1 T1]
题目描述 为了准备一个独特的颁奖典礼,组织者在会场的一片矩形区域(可看做是平面直角坐标系的第一象限)铺上一些矩形地毯.一共有 n 张地毯,编号从 1 到n .现在将这些地毯按照编号从小到大的顺序平行于 ...
- Python学习路程day1
变量起名: 变量名如果太长,推荐使用下划线来分开,让人看得清晰明白.例:nums_of_alex_girl=19 .或者是驼峰写法,即首字母大写.例:NumOfAlexGf=18 注意:不合法的变量起 ...
- 团队项目——站立会议 DAY1
团队项目--站立会议 DAY1 团队成员介绍(5人):张靖颜.何玥.钟灵毓秀.赵莹.王梓萱 今日(2016/5/6)为站立会议的第一天,一起对团队项目进行讨论,并对每个人的 ...
- Day1 login
使用流程: 1.程序启动后,显示欢迎信息,提示用户输入用户名: 2.判断用户是否存在,不存在则提示重新输入,或者关闭程序:客户存在则提示客户输入密码: 3.判断密码是否正确,如果不正确则提示用户重新输 ...
- contesthunter CH Round #64 - MFOI杯水题欢乐赛day1 solve
http://www.contesthunter.org/contest/CH Round %2364 - MFOI杯水题欢乐赛 day1/Solve Solve CH Round #64 - MFO ...
- noip2011提高组day1+day2解题报告
Day1 T1铺地毯https://www.luogu.org/problem/show?pid=1003 [题目分析] 全部读入以后从最后一个往前找,找到一个矩形的范围覆盖了这个点,那这个矩形就是最 ...
随机推荐
- android 连接网络的简单实例
1.android有两种连接网络的类HttpURLConnect和HttpClient,但是HttpClient已逐渐被HttpURLConnect类代替所以就不提及. 2.实例 String add ...
- MUD教程--巫师入门教程3
1. 指令格式为:edit <档名>,只加文件名,默认为当前目录,加here,表示编辑你当前所处的房间, 回车后即进入线上编辑系统. 2. 如果这是一个已经有的档案,你可以使用 z 或 Z ...
- MVC 创建带图片的<A></A>标签
<a href="@Url.Action("Detail", "Product", new { messageId = item.message ...
- poj 1065 简单的贪心算法
题意大概是:有一组木头需要处理,每块木头有长度,重量两个属性,处理的前一块木头长len,重wei,当下一块木头的len1,与wei1满足:len1>len&&wei1>we ...
- ByteBuffer用法总结
转自:http://blog.csdn.net/mars5337/article/details/6576417 在NIO中,数据的读写操作始终是与缓冲区相关联的.读取时信道(SocketChanne ...
- 网易云课堂_程序设计入门-C语言_第七周:指针与字符串_2GPS数据处理
2 GPS数据处理(6分) 题目内容: NMEA-0183协议是为了在不同的GPS(全球定位系统)导航设备中建立统一的BTCM(海事无线电技术委员会)标准,由美国国家海洋电子协会(NMEA-The N ...
- C#下使用GDAL
參考博客:http://blog.csdn.net/rrrrssss00/article/category/915498.以及viewmode=contents">李民录老师专栏.ht ...
- nginx源代码分析--配置文件解析
ngx-conf-parsing 对 Nginx 配置文件的一些认识: 配置指令具有作用域,分为全局作用域和使用 {} 创建其他作用域. 同一作用域的不同的配置指令没有先后顺序:同一作用域能否使用同样 ...
- uva 10306 - e-Coins(完全背包)
题目链接:10306 - e-Coins 题目大意:给出m和s, 再给出m种电子硬币,每种硬币有两种金额xi,yi.现在要在m种硬币种选若干个硬币,可以重复选同一种硬币, 使得(x1 + x2 + . ...
- [置顶] java web 动态服务器
写了一个java web 动态服务器,主要通过内部类来实现,动态类使用了外部类,采用了 classforname 实例化,动态类的构造方法不能带参数, 效果都出来了,分享给有需要的 朋友.判断做的不够 ...