Problem Description
  This year is the 60th anniversary of NJUST, and to make the celebration more colorful, Tom200 is going to invite distinguished alumnus back to visit and take photos.   After carefully planning, Tom200 announced his activity plan, one that contains two characters:   1. Whether the effect of the event are good or bad has nothing to do with the number of people join in.   2. The more people joining in one activity know each other, the more interesting the activity will be. Therefore, the best state is that, everyone knows each other.   The event appeals to a great number of alumnus, and Tom200 finds that they may not know each other or may just unilaterally recognize others. To improve the activities effects, Tom200 has to divide all those who signed up into groups to take part in the activity at different time. As we know, one's energy is limited, and Tom200 can hold activity twice. Tom200 already knows the relationship of each two person, but he cannot divide them because the number is too large.   Now Tom200 turns to you for help. Given the information, can you tell if it is possible to complete the dividing mission to make the two activity in best state.
 
Input
  The input contains several test cases, terminated by EOF.   Each case starts with a positive integer n (2<=n<=100), which means the number of people joining in the event.   N lines follow. The i-th line contains some integers which are the id of students that the i-th student knows, terminated by 0. And the id starts from 1.
 
Output
  If divided successfully, please output "YES" in a line, else output "NO".
 
Sample Input
3
3 0
1 0
1 2 0
 
Sample Output
YES
 
Source
 
怒贴两种方法的代码,以表示我的愤怒,这么简单的题目都想的那么复杂
 
第一种是dfs染色法
 
 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 106
#define inf 1e12
int n;
vector<int>v[N];
int color[N];
int mp[N][N];
bool dfs(int u,int c){
color[u]=c;
for(int i=;i<v[u].size();i++){
int num=v[u][i];
if(color[num]!=-){
if(color[num]==c){
return false;
}
continue;
}
if(!dfs(num,!c)) return false;
}
return true;
}
int main()
{
while(scanf("%d",&n)==){
for(int i=;i<N;i++){
v[i].clear();
}
memset(mp,,sizeof(mp));
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
while(x!=){
//v[i].push_back(x);
//v[x].push_back(i);
mp[i][x]=;
scanf("%d",&x);
}
} for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(mp[i][j]== || mp[j][i]==){
v[i].push_back(j);
v[j].push_back(i);
}
}
} memset(color,-,sizeof(color));
int flag=;
for(int i=;i<=n;i++){
if(color[i]==- && !dfs(i,)){
flag=;
break;
}
}
if(flag){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
}

第二种是2-sat,其实本质上和上一种是一样的

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 106
#define inf 1e12
int n,m; int mp[N][N];
int tot;
int head[N];
int vis[N];
int tt;
int scc;
stack<int>s;
int dfn[N],low[N];
int col[N];
struct Node
{
int from;
int to;
int next;
}edge[N*N];
void init()
{
tot=;
scc=;
tt=;
memset(head,-,sizeof(head));
memset(dfn,-,sizeof(dfn));
memset(low,,sizeof(low));
memset(vis,,sizeof(vis));
memset(col,,sizeof(col));
}
void add(int s,int u)//邻接矩阵函数
{
edge[tot].from=s;
edge[tot].to=u;
edge[tot].next=head[s];
head[s]=tot++;
}
void tarjan(int u)//tarjan算法找出图中的所有强连通分支
{
dfn[u] = low[u]= ++tt;
vis[u]=;
s.push(u);
int cnt=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(dfn[v]==-)
{
// sum++;
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]==)
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int x;
scc++;
do{
x=s.top();
s.pop();
col[x]=scc;
vis[x]=;
}while(x!=u);
}
}
bool two_sat(){ for(int i=;i<*n;i++){
if(dfn[i]==-){
tarjan(i);
}
}
for(int i=;i<n;i++){
if(col[*i]==col[*i+]){
return false;
}
}
return true;
}
int main()
{
while(scanf("%d",&n)==){
init();
memset(mp,,sizeof(mp)); while(!s.empty()){
s.pop();
}
int a,b,c;
int x;
for(int i=;i<n;i++){
scanf("%d",&x);
while(x!=){
x--;
mp[i][x]=;
scanf("%d",&x);
}
}
for(int i=;i<n;i++){
for(int j=;j<n;j++){
if(i==j) continue;
if(mp[i][j]==){
add(*i,*j+);
add(*j,*i+);
add(*i+,*j);
add(*j+,*i);
}
}
}
if(two_sat()){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
}

hdu 4751 Divide Groups(dfs染色 或 2-sat)的更多相关文章

  1. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  2. hdu 4751 Divide Groups bfs (2013 ACM/ICPC Asia Regional Nanjing Online 1004)

    SDUST的训练赛 当时死磕这个水题3个小时,也无心去搞其他的 按照题意,转换成无向图,预处理去掉单向的边,然后判断剩下的图能否构成两个无向完全图(ps一个完全图也行或是一个完全图+一个孤点) 代码是 ...

  3. HDU 4751 Divide Groups 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 题目大意:判断一堆人能否分成两组,组内人都互相认识. 解题思路:如果两个人不是相互认识,该两人之 ...

  4. HDU 4751 Divide Groups

    题目链接 比赛时候,建图建错了.大体算法想到了,不过很多细节都没想好. #include <cstdio> #include <cstring> #include <cm ...

  5. HDU 4751 Divide Groups (2-SAT)

    题意 给定一个有向图,问是否能够分成两个有向完全图. 思路 裸的2-sat--我们设一个完全图为0,另一个完全图为1,对于一个点对(u, v),如果u.v不是双向连通则它们两个不能在一组,即u和v至少 ...

  6. HDOJ 4751 Divide Groups

    染色判断二分图+补图 比赛的时候题意居然是反的,看了半天样例都看不懂 .... Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memo ...

  7. hdu 4751(dfs染色)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 思路:构建新图,对于那些两点连双向边的,忽略,然后其余的都连双向边,于是在新图中,连边的点是能不 ...

  8. uva 10004 Bicoloring(dfs二分染色,和hdu 4751代码差不多)

    Description In the ``Four Color Map Theorem" was proven with the assistance of a computer. This ...

  9. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

随机推荐

  1. iOS 面试常见问题最全梳理

    序言 目前形势,参加到iOS队伍的人是越来越多,甚至已经到供过于求了.今年,找过工作人可能会更深刻地体会到今年的就业形势不容乐观,加之,培训机构一火车地向用人单位输送iOS开发人员,打破了生态圈的动态 ...

  2. TCP和UDP的区别(转)

    TCP协议与UDP协议的区别    首先咱们弄清楚,TCP协议和UCP协议与TCP/IP协议的联系,很多人犯糊涂了,一直都是说TCP/IP协议与UDP协议的区别,我觉得这是没有从本质上弄清楚网络通信! ...

  3. python实现二叉树和它的七种遍历

    介绍: 树是数据结构中很重要的一种,基本的用途是用来提高查找效率,对于要反复查找的情况效果更佳,如二叉排序树.FP-树. 另外能够用来提高编码效率,如哈弗曼树. 代码: 用python实现树的构造和几 ...

  4. TCP/IP远程访问操作:rwho,rlogin,rcp和rsh

    TCP/IP网络通信 软件 包使用远程访问 的 命令 ,这些命令首先是由UC Berkely为Arpanet开发的.它允许您远程注册到另一个 系统 中,并从一个系统复制文件到另一个系统.您能取得关于一 ...

  5. linux TIME_WAIT过多的解决方法

      查看TCP状态:netstat -n | awk '/^tcp/ {++S[$NF]} END {for(a in S) print a, S[a]}'查看SOCKET状态:cat /proc/n ...

  6. [Hapi.js] Extending the request with lifecycle events

    Instead of using middlware, hapi provides a number of points during the lifecycle of a request that ...

  7. My way to Python - Day02

    版权声明: 本文中的资料均来自于互联网.将各路内容摘抄于此,作为学习笔记,方便用作后面翻阅查看.如果原作者对文中内容的引用有任何版权方面的问题,请随时联系,我将尽快处理. 特别鸣谢:武沛齐 <P ...

  8. EffectiveC#02--仅在对基类进行强制更新时才使用new修饰符

    1.建议避免使用new修饰符来重新定义非虚函数. 非虚方法是静态绑定的,不管哪里的代码也不管在哪里引用, 它总是严格的调用类中所定义的函数.并不会在运行时在 派生类中查找不同的版本. 2.何时使用ne ...

  9. javascript正则简单入门

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  10. Android开发实现透明通知栏

    这个特性是andorid4.4支持的,最少要api19才可以使用,也就是说如果Android的机子是低于4.4,沉浸通知栏是没有效果的.下面介绍一下使用的方法,非常得简单. public void i ...