Problem Description
  This year is the 60th anniversary of NJUST, and to make the celebration more colorful, Tom200 is going to invite distinguished alumnus back to visit and take photos.   After carefully planning, Tom200 announced his activity plan, one that contains two characters:   1. Whether the effect of the event are good or bad has nothing to do with the number of people join in.   2. The more people joining in one activity know each other, the more interesting the activity will be. Therefore, the best state is that, everyone knows each other.   The event appeals to a great number of alumnus, and Tom200 finds that they may not know each other or may just unilaterally recognize others. To improve the activities effects, Tom200 has to divide all those who signed up into groups to take part in the activity at different time. As we know, one's energy is limited, and Tom200 can hold activity twice. Tom200 already knows the relationship of each two person, but he cannot divide them because the number is too large.   Now Tom200 turns to you for help. Given the information, can you tell if it is possible to complete the dividing mission to make the two activity in best state.
 
Input
  The input contains several test cases, terminated by EOF.   Each case starts with a positive integer n (2<=n<=100), which means the number of people joining in the event.   N lines follow. The i-th line contains some integers which are the id of students that the i-th student knows, terminated by 0. And the id starts from 1.
 
Output
  If divided successfully, please output "YES" in a line, else output "NO".
 
Sample Input
3
3 0
1 0
1 2 0
 
Sample Output
YES
 
Source
 
怒贴两种方法的代码,以表示我的愤怒,这么简单的题目都想的那么复杂
 
第一种是dfs染色法
 
 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 106
#define inf 1e12
int n;
vector<int>v[N];
int color[N];
int mp[N][N];
bool dfs(int u,int c){
color[u]=c;
for(int i=;i<v[u].size();i++){
int num=v[u][i];
if(color[num]!=-){
if(color[num]==c){
return false;
}
continue;
}
if(!dfs(num,!c)) return false;
}
return true;
}
int main()
{
while(scanf("%d",&n)==){
for(int i=;i<N;i++){
v[i].clear();
}
memset(mp,,sizeof(mp));
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
while(x!=){
//v[i].push_back(x);
//v[x].push_back(i);
mp[i][x]=;
scanf("%d",&x);
}
} for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
if(mp[i][j]== || mp[j][i]==){
v[i].push_back(j);
v[j].push_back(i);
}
}
} memset(color,-,sizeof(color));
int flag=;
for(int i=;i<=n;i++){
if(color[i]==- && !dfs(i,)){
flag=;
break;
}
}
if(flag){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
}

第二种是2-sat,其实本质上和上一种是一样的

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
#include <stack>
using namespace std;
#define PI acos(-1.0)
#define max(a,b) (a) > (b) ? (a) : (b)
#define min(a,b) (a) < (b) ? (a) : (b)
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 106
#define inf 1e12
int n,m; int mp[N][N];
int tot;
int head[N];
int vis[N];
int tt;
int scc;
stack<int>s;
int dfn[N],low[N];
int col[N];
struct Node
{
int from;
int to;
int next;
}edge[N*N];
void init()
{
tot=;
scc=;
tt=;
memset(head,-,sizeof(head));
memset(dfn,-,sizeof(dfn));
memset(low,,sizeof(low));
memset(vis,,sizeof(vis));
memset(col,,sizeof(col));
}
void add(int s,int u)//邻接矩阵函数
{
edge[tot].from=s;
edge[tot].to=u;
edge[tot].next=head[s];
head[s]=tot++;
}
void tarjan(int u)//tarjan算法找出图中的所有强连通分支
{
dfn[u] = low[u]= ++tt;
vis[u]=;
s.push(u);
int cnt=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
if(dfn[v]==-)
{
// sum++;
tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(vis[v]==)
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int x;
scc++;
do{
x=s.top();
s.pop();
col[x]=scc;
vis[x]=;
}while(x!=u);
}
}
bool two_sat(){ for(int i=;i<*n;i++){
if(dfn[i]==-){
tarjan(i);
}
}
for(int i=;i<n;i++){
if(col[*i]==col[*i+]){
return false;
}
}
return true;
}
int main()
{
while(scanf("%d",&n)==){
init();
memset(mp,,sizeof(mp)); while(!s.empty()){
s.pop();
}
int a,b,c;
int x;
for(int i=;i<n;i++){
scanf("%d",&x);
while(x!=){
x--;
mp[i][x]=;
scanf("%d",&x);
}
}
for(int i=;i<n;i++){
for(int j=;j<n;j++){
if(i==j) continue;
if(mp[i][j]==){
add(*i,*j+);
add(*j,*i+);
add(*i+,*j);
add(*j+,*i);
}
}
}
if(two_sat()){
printf("YES\n");
}
else{
printf("NO\n");
}
}
return ;
}

hdu 4751 Divide Groups(dfs染色 或 2-sat)的更多相关文章

  1. HDU 4751 Divide Groups (2013南京网络赛1004题,判断二分图)

    Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  2. hdu 4751 Divide Groups bfs (2013 ACM/ICPC Asia Regional Nanjing Online 1004)

    SDUST的训练赛 当时死磕这个水题3个小时,也无心去搞其他的 按照题意,转换成无向图,预处理去掉单向的边,然后判断剩下的图能否构成两个无向完全图(ps一个完全图也行或是一个完全图+一个孤点) 代码是 ...

  3. HDU 4751 Divide Groups 2013 ACM/ICPC Asia Regional Nanjing Online

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 题目大意:判断一堆人能否分成两组,组内人都互相认识. 解题思路:如果两个人不是相互认识,该两人之 ...

  4. HDU 4751 Divide Groups

    题目链接 比赛时候,建图建错了.大体算法想到了,不过很多细节都没想好. #include <cstdio> #include <cstring> #include <cm ...

  5. HDU 4751 Divide Groups (2-SAT)

    题意 给定一个有向图,问是否能够分成两个有向完全图. 思路 裸的2-sat--我们设一个完全图为0,另一个完全图为1,对于一个点对(u, v),如果u.v不是双向连通则它们两个不能在一组,即u和v至少 ...

  6. HDOJ 4751 Divide Groups

    染色判断二分图+补图 比赛的时候题意居然是反的,看了半天样例都看不懂 .... Divide Groups Time Limit: 2000/1000 MS (Java/Others)    Memo ...

  7. hdu 4751(dfs染色)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 思路:构建新图,对于那些两点连双向边的,忽略,然后其余的都连双向边,于是在新图中,连边的点是能不 ...

  8. uva 10004 Bicoloring(dfs二分染色,和hdu 4751代码差不多)

    Description In the ``Four Color Map Theorem" was proven with the assistance of a computer. This ...

  9. hdu 5313 Bipartite Graph(dfs染色 或者 并查集)

    Problem Description Soda has a bipartite graph with n vertices and m undirected edges. Now he wants ...

随机推荐

  1. Unity重要的函数

    Awake 当一个脚本实例被载入时Awake被调用. Start Start仅在Update函数第一次被调用前调用. Update 当MonoBehaviour启用时,其Update在每一帧被调用. ...

  2. 第07讲- Android项目的打包apk

    第07讲Android项目的打包apk 方法一:在工作目录bin文件夹下有一个与项目同名的apk文件 (最懒惰的方式,不推荐,不安全,不利于版本更新,只有在开发模式时使用) 方法二:使用key方式 签 ...

  3. 自定义一个searchBar

    #import "CZSearchBar.h" @implementation CZSearchBar - (instancetype)initWithFrame:(CGRect) ...

  4. 01我为什么学Unity3d

    首发于游戏蛮牛论坛&&我的CSDN博客:http://blog.csdn.net/wowkk/article/details/18571055 转载请说明出处.谢谢. 本人现大学生,带 ...

  5. hdu 2825 Wireless Password(ac自己主动机&amp;dp)

    Wireless Password Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others ...

  6. Andriod布局之LinearLayout

    LinearLayout是安卓中的常见布局,即线性布局.(提示:在Andriod中要常用alt+/快捷键来补全代码 其中有一个重要的属性android:orientation,它是表示线性布局的方向问 ...

  7. jQuery对象和dom对象之间的相互转化

    var domObj = document.getElementById("demo"); var $Obj = $("#demo"); DOM转jQuery: ...

  8. photoshop动作面板批量处理图片边框技巧

    1,想给图片加上边框,在不改变图片大小的前提下,可以这样做:ctrl+a,全选图片,然后“编辑”-----“描边”,在跳出来的选项卡里面可以设置边框颜色,大小,位置,及混合模式, ,我们设置好了,就可 ...

  9. asp.net 内部重定向

    1. /* * 2. * Context.RewritePath() * 使用给定路径重写 URL.(内部重写) * 内部请求重写 */ public static void TestTwo() { ...

  10. android动画效果大全

    动画类型 Android的animation由四种类型组成  Android动画模式 Animation主要有两种动画模式:一种是tweened animation(渐变动画 XML中 JavaCod ...