hadoop2.2编程:矩阵相乘简单实现
/*
matrix-matrix multiplication on Hadoop
A x B = C
constraint: A, B, C must be of the same size
I use this to evaluate the efficiency of Hadoop for matrix multiplication,
so I really don't care to handle non-square matrices.
===Data preparation====
Matrix data must be stored in a file on Hadoop.
Line number must be appended to the beginning of each line.
For example, the following represents a 4x4 matrix:
0 18 20 16 14
1 17 12 11 19
2 10 17 11 19
3 14 17 20 10
Left (A in this example) matrix should be stored in file "left";
Right (B in this example) matrix should be stored in file "right";
I use filenames to distinguish input data.
Place "left" and "right" in the same folder (let's call it "input")
====Run the program====
> hadoop jar matrixmul.jar MatrixMul input output 8 2
results will be placed in "output" folder on HDFS.
8: all matrices are 8x8
2: every partitioned block is of size 2x2
===Read the results===
Given the above sample command, we multiply two 8x8 matrices,
in many 2x2 blocks. So, that the resulted C matrix has 16 blocks.
In the output folder, there will be 16 separate files:
part-r-00000, part-r-00001, ... part-r-00015
Every file stores one block in C. In this example, every block
has 2 rows and 2 columns.
These files are organized in "row"-order.
===Algorithm===
Mappers read input data.
Every reducer processes one block of the resulted matrix.
*/
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class MatrixMul {
public static class MyMapper extends Mapper<LongWritable, Text, IntWritable, Text>{
private String filename=null;
private boolean isLeftMatrix=false;
private int totalSize, partSize, npart;
private boolean isLeft(){return isLeftMatrix;}
protected void setup(Context context) throws IOException, InterruptedException{
//get filename
FileSplit fileSplit = (FileSplit)context.getInputSplit();
filename = fileSplit.getPath().getName();
if("left".equalsIgnoreCase(filename))
isLeftMatrix=true;
else
isLeftMatrix=false;
//get how size and partition information
Configuration conf=context.getConfiguration();
totalSize=conf.getInt("matrix-mul-totalsize", -1);
partSize=conf.getInt("matrix-mul-partsize", -1);
npart=conf.getInt("matrix-mul-npart", -1);
if(totalSize<0 || partSize<0 || npart<0){
System.out.println("Error in setup of MyMapper.");
System.exit(1);
}
}
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String line=value.toString();
String[] strs=line.split(" ");
if(strs.length!=totalSize+1){
System.out.println("Error in map of Mapper.");
System.out.println(strs.length+"___"+totalSize);
System.out.println("line is: "+line);
System.exit(1);
}
int linenum=Integer.parseInt(strs[0]);
int[] numbers=new int[totalSize];
for(int i=0;i<totalSize;i++)
numbers[i]=Integer.parseInt(strs[i+1]);
int part_hor=linenum/partSize; //horizontal partitioned id
int prev_part_ver=-1;
String msg=null;
for(int i=0;i<totalSize;i++){
int part_ver=i/partSize; //vertical partition number
if(part_ver!=prev_part_ver){
if(msg!=null){
int baselinenum = part_hor * partSize;
int old=part_ver;
part_ver=prev_part_ver;
if(isLeft()){
String toSend="l:"+(linenum - baselinenum)+":"+part_ver+"#"+msg;
System.out.println("left "+linenum+","+part_ver+" "+msg);
for(int k=0;k<npart;k++){
int dest=part_hor * npart + k;
context.write(new IntWritable(dest), new Text(toSend));
}
}else{
String toSend="r:"+(linenum - baselinenum)+":"+part_hor+"#"+msg;
System.out.println("right "+part_ver+":"+linenum+" "+msg);
for(int k=0;k<npart;k++){
int dest=k * npart + part_ver;
context.write(new IntWritable(dest), new Text(toSend));
}
}
part_ver=old;
}
msg=null;
prev_part_ver=part_ver;
}
if(msg==null)
msg=""+strs[i+1];
else
msg+=" "+strs[i+1];
}
if(msg!=null){ //almost the same code
int part_ver=npart-1;
int baselinenum = part_hor * partSize;
if(isLeft()){
String toSend="l:"+(linenum - baselinenum)+":"+part_ver+"#"+msg;
System.out.println("left "+linenum+","+part_ver+" "+msg);
for(int k=0;k<npart;k++){
int dest=part_hor * npart + k;
context.write(new IntWritable(dest), new Text(toSend));
}
}else{
String toSend="r:"+(linenum - baselinenum)+":"+part_hor+"#"+msg;
System.out.println("right "+part_ver+":"+linenum+" "+msg);
for(int k=0;k<npart;k++){
int dest=k * npart + part_ver; //has to be the last part
context.write(new IntWritable(dest), new Text(toSend));
}
}
}
}
}
public static class MyReducer extends Reducer<IntWritable, Text, Text, Text> {
private int totalSize, partSize, npart;
int[][] left=null;
int[][] right=null;
protected void setup(Context context) throws IOException, InterruptedException{
//get how # of partitions
Configuration conf=context.getConfiguration();
totalSize=conf.getInt("matrix-mul-totalsize", -1);
partSize=conf.getInt("matrix-mul-partsize", -1);
npart=conf.getInt("matrix-mul-npart", -1);
if(totalSize<0 || partSize<0 || npart<0){
System.out.println("Error in setup of MyReducer.");
System.exit(1);
}
left=new int[partSize][totalSize];
right=new int[totalSize][partSize];
}
public void reduce(IntWritable key, Iterable<Text> values, Context context
) throws IOException, InterruptedException {
int sum = 0;
for (Text val : values) {
String line=val.toString();
String[] meta_val=line.split("#");
String[] metas=meta_val[0].split(":");
String[] numbers=meta_val[1].split(" ");
int baselinenum=Integer.parseInt(metas[1]);
int blkindex=Integer.parseInt(metas[2]);
if("l".equalsIgnoreCase(metas[0])){ //from left matrix
int start=blkindex * partSize;
for(int i=0;i<partSize; i++)
left[baselinenum][start+i]=Integer.parseInt(numbers[i]);
}else{
int rowindex=blkindex*partSize + baselinenum;
for(int i=0;i<partSize; i++)
right[rowindex][i]=Integer.parseInt(numbers[i]);
}
}
}
protected void cleanup(Context context) throws IOException, InterruptedException {
//now let's do the calculation
int[][] res=new int[partSize][partSize];
for(int i=0;i<partSize;i++)
for(int j=0;j<partSize;j++)
res[i][j]=0;
for(int i=0;i<partSize;i++){
for(int k=0;k<totalSize;k++){
for(int j=0;j<partSize;j++){
res[i][j]+=left[i][k]*right[k][j];
}
}
}
for(int i=0;i<partSize;i++){
String output=null;
for(int j=0;j<partSize;j++){
if(output==null)
output=""+res[i][j];
else
output+=" "+res[i][j];
}
context.write(new Text(output), null);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
if (args.length != 4) {
System.err.println("Usage: MatrixMul input-dir output-dir total-size part-size");
System.exit(2);
}
int totalsize=Integer.parseInt(args[2]);
int partsize=Integer.parseInt(args[3]);
if(totalsize==0 || partsize==0 || partsize>totalsize){
System.out.println("Invalid total-size or part-size");
System.exit(1);
}
conf.setInt("matrix-mul-totalsize", totalsize); //the matrix is 'totalsize' by 'totalsize'
conf.setInt("matrix-mul-partsize", partsize); //every block is 'partsize' by 'partsize'
int npart=totalsize/partsize;
if(npart*partsize<totalsize)
npart++;
conf.setInt("matrix-mul-npart", npart); //number of parts on one dimension
Job job = new Job(conf, "matrix-mul");
job.setJarByClass(MatrixMul.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setNumReduceTasks(npart*npart);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);
//FileInputFormat.addInputPath(job, new Path(args[0]));
TextInputFormat.addInputPath(job, new Path(args[0])); //need to read a complete line
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true) ;
}
}
hadoop2.2编程:矩阵相乘简单实现的更多相关文章
- CUDA编程-(2)其实写个矩阵相乘并不是那么难
程序代码及图解析: #include <iostream> #include "book.h" __global__ void add( int a, int b, i ...
- 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示
编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...
- 利用Hadoop实现超大矩阵相乘之我见(二)
前文 在<利用Hadoop实现超大矩阵相乘之我见(一)>中我们所介绍的方法有着“计算过程中文件占用存储空间大”这个缺陷,本文中我们着重解决这个问题. 矩阵相乘计算思想 传统的矩阵相乘方法为 ...
- 利用Hadoop实现超大矩阵相乘之我见(一)
前记 最近,公司一位挺优秀的总务离职,欢送宴上,她对我说“你是一位挺优秀的程序员”,刚说完,立马道歉说“对不起,我说你是程序员是不是侮辱你了?”我挺诧异,程序员现在是很低端,很被人瞧不起的工作吗?或许 ...
- Strassen 矩阵相乘算法(转)
偶尔在算法课本上面看到矩阵相乘的算法,联想到自己曾经在蓝桥杯系统上曾经做过一道矩阵相乘的题目,当时用的是普通的矩阵相乘的方法,效率极低,勉强通过编译.所以决定研究一下Strassen矩阵相乘算法,由于 ...
- dp方法论——由矩阵相乘问题学习dp解题思路
前篇戳:dp入门——由分杆问题认识动态规划 导语 刷过一些算法题,就会十分珍惜“方法论”这种东西.Leetcode上只有题目.讨论和答案,没有方法论.往往答案看起来十分切中要害,但是从看题目到得到思路 ...
- Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘.dot.mul运算详解 2016年09月02日 00:00:36 -牧野- 阅读数:59593 标签: Opencv矩阵相乘点乘dotmul 更多 个人分类: O ...
- C++两个矩阵相乘
/*编程求两个矩阵相乘的结果.输入第一行是整数m,n,表示第一个矩阵式m行n列的:然后是一个m * n的矩阵.再下一行的输入时整数p,q,表示下一个矩阵p行,q列的(n=p);然后就是一个p行q列的矩 ...
- 使用cublas 矩阵库函数实现矩阵相乘
2014-08-10 cublas中执行矩阵乘法运算的函数 首先要注意的是cublas使用的是以列为主的存储方式,和c/c++中的以行为主的方式是不一样的.处理方法可参考下面的注释代码 // SOME ...
随机推荐
- C++实用数据结构:二叉索引树
看下面这个问题(动态连续和查询): 有一个数组A(长度为n),要求进行两种操作: add(i,x):让Ai增大x: query(a,b):询问Aa+Aa+1+...+Ab的和: 若进行模拟,则每次qu ...
- InstallShield: Component-Feature Associations
Quote from: http://helpnet.installshield.com/installshield16helplib/IHelpFeatAssociateComponents.htm ...
- TreeSet集合
TreeSet集合 TreeSet集合是一个依靠TreeMap实现的有序集合,内部存储元素是自动按照自然排序进行排列,所以如果想要保留存储时的顺序,那么就不建议使用TreeSet. TreeSet继承 ...
- Volley网络请求框架的基本用法
备注: 本笔记是参照了 http://blog.csdn.net/ysh06201418/article/details/46443235 学习之后写下的 简介: Volley是google官网退 ...
- 如何在Linux下创建与解压zip, tar, tar.gz和tar.bz2文件
这么多年来,数据压缩对我们来说是非常有用的.无论是在邮件中发送的图片用的zip文件还是在服务器压缩数据文件,我们都可以让下载更容易或者有效的节约磁盘空间.某些压缩格式有时允许我们以60%的比率(甚至更 ...
- QtSQL学习笔记(1)- 概述
Qt SQL是Qt提供的核心模块,用以支持SQL数据库.Qt SQL的API被分为不同的层: ■ 驱动层 (Driver layer) ■ API层 (SQL API layer) ■ 用户接口层 ( ...
- 重新开始学习c#啦,希望能坚持下去!
过了这么多年,还是感觉自己喜欢C#,喜欢编程,虽然自己什么技术也没有:做的项目也不算是项目:
- 001.XE3添加TPerlRegEx
TPerlRegEx 官方下载地址:http://www.regular-expressions.info/download/TPerlRegEx.zip 下载解压,打开pcre.pas文件可看到,直 ...
- 制作UI纹理(UI Texture)
什么情况下使用UI Texture UI Texture的功能是在屏幕上显示一张图片,在这一点上它和Sprite有着相似的功能,但是UI Texture会消耗单独的DrawCall去渲染,并会单独加载 ...
- IndexedDB 增删改查 简单的库
<!DOCTYPE html> <html> <head> <title></title> <script src="Ind ...