hadoop2.2编程:矩阵相乘简单实现
/*
matrix-matrix multiplication on Hadoop
A x B = C
constraint: A, B, C must be of the same size
I use this to evaluate the efficiency of Hadoop for matrix multiplication,
so I really don't care to handle non-square matrices.
===Data preparation====
Matrix data must be stored in a file on Hadoop.
Line number must be appended to the beginning of each line.
For example, the following represents a 4x4 matrix:
0 18 20 16 14
1 17 12 11 19
2 10 17 11 19
3 14 17 20 10
Left (A in this example) matrix should be stored in file "left";
Right (B in this example) matrix should be stored in file "right";
I use filenames to distinguish input data.
Place "left" and "right" in the same folder (let's call it "input")
====Run the program====
> hadoop jar matrixmul.jar MatrixMul input output 8 2
results will be placed in "output" folder on HDFS.
8: all matrices are 8x8
2: every partitioned block is of size 2x2
===Read the results===
Given the above sample command, we multiply two 8x8 matrices,
in many 2x2 blocks. So, that the resulted C matrix has 16 blocks.
In the output folder, there will be 16 separate files:
part-r-00000, part-r-00001, ... part-r-00015
Every file stores one block in C. In this example, every block
has 2 rows and 2 columns.
These files are organized in "row"-order.
===Algorithm===
Mappers read input data.
Every reducer processes one block of the resulted matrix.
*/
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class MatrixMul {
public static class MyMapper extends Mapper<LongWritable, Text, IntWritable, Text>{
private String filename=null;
private boolean isLeftMatrix=false;
private int totalSize, partSize, npart;
private boolean isLeft(){return isLeftMatrix;}
protected void setup(Context context) throws IOException, InterruptedException{
//get filename
FileSplit fileSplit = (FileSplit)context.getInputSplit();
filename = fileSplit.getPath().getName();
if("left".equalsIgnoreCase(filename))
isLeftMatrix=true;
else
isLeftMatrix=false;
//get how size and partition information
Configuration conf=context.getConfiguration();
totalSize=conf.getInt("matrix-mul-totalsize", -1);
partSize=conf.getInt("matrix-mul-partsize", -1);
npart=conf.getInt("matrix-mul-npart", -1);
if(totalSize<0 || partSize<0 || npart<0){
System.out.println("Error in setup of MyMapper.");
System.exit(1);
}
}
public void map(LongWritable key, Text value, Context context
) throws IOException, InterruptedException {
String line=value.toString();
String[] strs=line.split(" ");
if(strs.length!=totalSize+1){
System.out.println("Error in map of Mapper.");
System.out.println(strs.length+"___"+totalSize);
System.out.println("line is: "+line);
System.exit(1);
}
int linenum=Integer.parseInt(strs[0]);
int[] numbers=new int[totalSize];
for(int i=0;i<totalSize;i++)
numbers[i]=Integer.parseInt(strs[i+1]);
int part_hor=linenum/partSize; //horizontal partitioned id
int prev_part_ver=-1;
String msg=null;
for(int i=0;i<totalSize;i++){
int part_ver=i/partSize; //vertical partition number
if(part_ver!=prev_part_ver){
if(msg!=null){
int baselinenum = part_hor * partSize;
int old=part_ver;
part_ver=prev_part_ver;
if(isLeft()){
String toSend="l:"+(linenum - baselinenum)+":"+part_ver+"#"+msg;
System.out.println("left "+linenum+","+part_ver+" "+msg);
for(int k=0;k<npart;k++){
int dest=part_hor * npart + k;
context.write(new IntWritable(dest), new Text(toSend));
}
}else{
String toSend="r:"+(linenum - baselinenum)+":"+part_hor+"#"+msg;
System.out.println("right "+part_ver+":"+linenum+" "+msg);
for(int k=0;k<npart;k++){
int dest=k * npart + part_ver;
context.write(new IntWritable(dest), new Text(toSend));
}
}
part_ver=old;
}
msg=null;
prev_part_ver=part_ver;
}
if(msg==null)
msg=""+strs[i+1];
else
msg+=" "+strs[i+1];
}
if(msg!=null){ //almost the same code
int part_ver=npart-1;
int baselinenum = part_hor * partSize;
if(isLeft()){
String toSend="l:"+(linenum - baselinenum)+":"+part_ver+"#"+msg;
System.out.println("left "+linenum+","+part_ver+" "+msg);
for(int k=0;k<npart;k++){
int dest=part_hor * npart + k;
context.write(new IntWritable(dest), new Text(toSend));
}
}else{
String toSend="r:"+(linenum - baselinenum)+":"+part_hor+"#"+msg;
System.out.println("right "+part_ver+":"+linenum+" "+msg);
for(int k=0;k<npart;k++){
int dest=k * npart + part_ver; //has to be the last part
context.write(new IntWritable(dest), new Text(toSend));
}
}
}
}
}
public static class MyReducer extends Reducer<IntWritable, Text, Text, Text> {
private int totalSize, partSize, npart;
int[][] left=null;
int[][] right=null;
protected void setup(Context context) throws IOException, InterruptedException{
//get how # of partitions
Configuration conf=context.getConfiguration();
totalSize=conf.getInt("matrix-mul-totalsize", -1);
partSize=conf.getInt("matrix-mul-partsize", -1);
npart=conf.getInt("matrix-mul-npart", -1);
if(totalSize<0 || partSize<0 || npart<0){
System.out.println("Error in setup of MyReducer.");
System.exit(1);
}
left=new int[partSize][totalSize];
right=new int[totalSize][partSize];
}
public void reduce(IntWritable key, Iterable<Text> values, Context context
) throws IOException, InterruptedException {
int sum = 0;
for (Text val : values) {
String line=val.toString();
String[] meta_val=line.split("#");
String[] metas=meta_val[0].split(":");
String[] numbers=meta_val[1].split(" ");
int baselinenum=Integer.parseInt(metas[1]);
int blkindex=Integer.parseInt(metas[2]);
if("l".equalsIgnoreCase(metas[0])){ //from left matrix
int start=blkindex * partSize;
for(int i=0;i<partSize; i++)
left[baselinenum][start+i]=Integer.parseInt(numbers[i]);
}else{
int rowindex=blkindex*partSize + baselinenum;
for(int i=0;i<partSize; i++)
right[rowindex][i]=Integer.parseInt(numbers[i]);
}
}
}
protected void cleanup(Context context) throws IOException, InterruptedException {
//now let's do the calculation
int[][] res=new int[partSize][partSize];
for(int i=0;i<partSize;i++)
for(int j=0;j<partSize;j++)
res[i][j]=0;
for(int i=0;i<partSize;i++){
for(int k=0;k<totalSize;k++){
for(int j=0;j<partSize;j++){
res[i][j]+=left[i][k]*right[k][j];
}
}
}
for(int i=0;i<partSize;i++){
String output=null;
for(int j=0;j<partSize;j++){
if(output==null)
output=""+res[i][j];
else
output+=" "+res[i][j];
}
context.write(new Text(output), null);
}
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
if (args.length != 4) {
System.err.println("Usage: MatrixMul input-dir output-dir total-size part-size");
System.exit(2);
}
int totalsize=Integer.parseInt(args[2]);
int partsize=Integer.parseInt(args[3]);
if(totalsize==0 || partsize==0 || partsize>totalsize){
System.out.println("Invalid total-size or part-size");
System.exit(1);
}
conf.setInt("matrix-mul-totalsize", totalsize); //the matrix is 'totalsize' by 'totalsize'
conf.setInt("matrix-mul-partsize", partsize); //every block is 'partsize' by 'partsize'
int npart=totalsize/partsize;
if(npart*partsize<totalsize)
npart++;
conf.setInt("matrix-mul-npart", npart); //number of parts on one dimension
Job job = new Job(conf, "matrix-mul");
job.setJarByClass(MatrixMul.class);
job.setMapperClass(MyMapper.class);
job.setReducerClass(MyReducer.class);
job.setNumReduceTasks(npart*npart);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(Text.class);
//FileInputFormat.addInputPath(job, new Path(args[0]));
TextInputFormat.addInputPath(job, new Path(args[0])); //need to read a complete line
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.waitForCompletion(true) ;
}
}
hadoop2.2编程:矩阵相乘简单实现的更多相关文章
- CUDA编程-(2)其实写个矩阵相乘并不是那么难
程序代码及图解析: #include <iostream> #include "book.h" __global__ void add( int a, int b, i ...
- 编程计算2×3阶矩阵A和3×2阶矩阵B之积C。 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值。 要求: (1)从键盘分别输入矩阵A和B, 输出乘积矩阵C (2) **输入提示信息为: 输入矩阵A之前提示:"Input 2*3 matrix a:\n" 输入矩阵B之前提示
编程计算2×3阶矩阵A和3×2阶矩阵B之积C. 矩阵相乘的基本方法是: 矩阵A的第i行的所有元素同矩阵B第j列的元素对应相乘, 并把相乘的结果相加,最终得到的值就是矩阵C的第i行第j列的值. 要求: ...
- 利用Hadoop实现超大矩阵相乘之我见(二)
前文 在<利用Hadoop实现超大矩阵相乘之我见(一)>中我们所介绍的方法有着“计算过程中文件占用存储空间大”这个缺陷,本文中我们着重解决这个问题. 矩阵相乘计算思想 传统的矩阵相乘方法为 ...
- 利用Hadoop实现超大矩阵相乘之我见(一)
前记 最近,公司一位挺优秀的总务离职,欢送宴上,她对我说“你是一位挺优秀的程序员”,刚说完,立马道歉说“对不起,我说你是程序员是不是侮辱你了?”我挺诧异,程序员现在是很低端,很被人瞧不起的工作吗?或许 ...
- Strassen 矩阵相乘算法(转)
偶尔在算法课本上面看到矩阵相乘的算法,联想到自己曾经在蓝桥杯系统上曾经做过一道矩阵相乘的题目,当时用的是普通的矩阵相乘的方法,效率极低,勉强通过编译.所以决定研究一下Strassen矩阵相乘算法,由于 ...
- dp方法论——由矩阵相乘问题学习dp解题思路
前篇戳:dp入门——由分杆问题认识动态规划 导语 刷过一些算法题,就会十分珍惜“方法论”这种东西.Leetcode上只有题目.讨论和答案,没有方法论.往往答案看起来十分切中要害,但是从看题目到得到思路 ...
- Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘.dot.mul运算详解 2016年09月02日 00:00:36 -牧野- 阅读数:59593 标签: Opencv矩阵相乘点乘dotmul 更多 个人分类: O ...
- C++两个矩阵相乘
/*编程求两个矩阵相乘的结果.输入第一行是整数m,n,表示第一个矩阵式m行n列的:然后是一个m * n的矩阵.再下一行的输入时整数p,q,表示下一个矩阵p行,q列的(n=p);然后就是一个p行q列的矩 ...
- 使用cublas 矩阵库函数实现矩阵相乘
2014-08-10 cublas中执行矩阵乘法运算的函数 首先要注意的是cublas使用的是以列为主的存储方式,和c/c++中的以行为主的方式是不一样的.处理方法可参考下面的注释代码 // SOME ...
随机推荐
- asp.net 控件 导出 excel
//导出EXCEL protected void btnDaoChu_Click(object sender, EventArgs e) { HttpContext.Current.Response. ...
- C. Sonya and Queries
http://codeforces.com/contest/714/problem/C 看到这题目,想想,肯定不能暴力啊,如果用map,如何快速找到满足要求的数目,然后,长度18,我想,这不是熟悉的t ...
- 《C#入门典》
这本书算是我读的第一本关于.NET的书. 上大学的时候,教我们课的老师经常给我们安利"Wrox红皮书",说这是程序员写给程序员的书,有很高的参考价值. 这本书的电子版,有1000多 ...
- 构造函数为什么不能是虚函数 ( 转载自C/C++程序员之家)
从存储空间角度,虚函数对应一个指向vtable虚函数表的指针,这大家都知道,可是这个指向vtable的指针其实是存储在对象的内存空间的.问题出来了,如果构造函数是虚的,就需要通过 vtable来调用, ...
- php的运行环境介绍
php软件已下载在我的百度云:页面底部有地址,如有需要欢迎下载! 一:如何让php环境运行php代码? 直接使用php软件直接运行代码文件中的php代码 在B/S结构中让Apache使用php软件运行 ...
- AVAudioRecorder 录制音频
AVFoundation 中使用AVAudioRecorder 类添加音频录制功能是非常简单的, AVAudioRecorder构建与Audio Queue Services之上是一个功能强大且代码简 ...
- sae-xhprof调试性能
1. 在storage中创建xhprof的domain 2.在xhprof中,给对应的版本应用开启调试 3.在版本内的代码加入 sae_xhprof_start(); // 需要调优的代码 // .. ...
- 【InstallShield】 为什么卸载后有的文件没有删掉
1.Component的属性Permanent设置为Yes. 2.Component的ID为空. 3.Component被其他应用程序或者Feature使用. 4.设置了一个Condition,在安装 ...
- Codeforces Round #344 (Div. 2) C. Report
Report 题意:给长度为n的序列,操作次数为m:n and m (1 ≤ n, m ≤ 200 000) ,操作分为t r,当t = 1时表示将[1,r]序列按非递减排序,t = 2时表示将序列[ ...
- 初识Tower Defense Toolkit
Tower Defense Toolkit 做塔防游戏的插件 主要层次如下图: 1GameControl _ _Game Control(Script) _ _ _Spawn Manager _ _ ...