研究了一下仙人掌
首先,仙人掌虽然不是树,但却有很强的树的既视感
如果把每个环都看做一个点,那么他就是一棵树
当然这不能直接缩环,因为环和环可以有一个交点
如果是树,求直径都会做,令f[i]表示i到子树的最长距离然后弄一弄
但现在是树套环,怎么弄?
我们先根据dfs时间戳的思想,dfs下去,构成了一棵dfs树
我们的思想是先处理桥(树边),再处理环
这时候f[i]表示i在dfs树上i到子树的最长距离
dfs到i时,我们先用树形dp的思想求出不考虑环的f[i]
然后再把环拉出来一个个考虑,显然环上点j的f[j]除了和环上另一个点组成的路径对ans直接影响外
只会通过对最高点(时间戳最小的点)i的f[i]的影响来影响其他非以i为根的子树上的点
所以我们用环上的点来更新f[i]即可
再考虑环上两点路径对ans直接影响,枚举点j,显然可以得到
显然可以得到ans=max(ans,f[j]+max(f[k]+dis(j,k)));
我们对环上的点按照dfs树上的深度由小到大编号,t是环上点总数
可以得到dis(j,k)=min(k-j,t-k+j-i+1) (k>j)
考虑到环上两点间距离有两种情况,对此我们可以把环复制一遍然后做单调队列即可
最后,显然所有更新都是先更新ans再更新f[i],

 {$m 1000000}
type node=record
po,next:longint;
end; var a,q:array[..] of longint;
fa,low,dfn,f,p,d:array[..] of longint;
e:array[..] of node;
j,s,ans,h,len,i,n,m,x,y:longint; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; function max(a,b:longint):longint;
begin
if a>b then exit(a) else exit(b);
end; procedure add(x,y:longint);
begin
inc(len);
e[len].po:=y;
e[len].next:=p[x];
p[x]:=len;
end; procedure dp(x,y:longint);
var t,h,r,i,p:longint;
begin
t:=d[y]-d[x]+; //环上点的数目
h:=;
r:=;
p:=y;
for i:=t downto do
begin
a[i]:=f[p];
a[i+t]:=a[i]; //复制一遍,把两点间距离转化为编号差
p:=fa[p];
end;
q[]:=; //维护单调减的双端队列
for i:= to t+t div do
begin
while (h<=r) and (q[h]<i-t div ) do inc(h); //队头的点和当前点的距离已经不是最短距离
ans:=max(ans,a[q[h]]+a[i]+i-q[h]);
while (h<=r) and (a[q[r]]-q[r]<=a[i]-i) do dec(r);
inc(r);
q[r]:=i;
end;
for i:= to t do
f[x]:=max(f[x],a[i]+min(i-,t-i+));
end; procedure tarjan(x:longint);
var i,y:longint;
begin
inc(h);
dfn[x]:=h;
low[x]:=h;
i:=p[x];
while i<> do
begin
y:=e[i].po;
if fa[x]<>y then
begin
if dfn[y]= then
begin
fa[y]:=x;
d[y]:=d[x]+;
tarjan(y);
end;
low[x]:=min(low[x],low[y]);
if dfn[x]<low[y] then //如果与x和x的祖先不构成环
begin
ans:=max(ans,f[x]+f[y]+);
f[x]:=max(f[x],f[y]+);
end;
end;
i:=e[i].next;
end;
i:=p[x];
while i<> do
begin
y:=e[i].po;
if (fa[y]<>x) and (dfn[x]<dfn[y]) then //与x节点成环
dp(x,y);
i:=e[i].next;
end;
end; begin
readln(n,m);
for i:= to m do
begin
read(s);
read(x);
for j:= to s do
begin
read(y);
add(x,y);
add(y,x);
x:=y;
end;
end;
tarjan();
writeln(ans);
end.

bzoj1023的更多相关文章

  1. 【bzoj1023】仙人掌图

    [bzoj1023]仙人掌图 题意 给一棵仙人掌,求直径. \(n\leq 100000\) 分析 分析1:[Tarjan]+[环处理+单调队列优化线性dp]+[树形dp] 分开两种情况处理: ①环: ...

  2. 【BZOJ1023】仙人掌图(仙人掌,动态规划)

    [BZOJ1023]仙人掌图(仙人掌,动态规划) 题面 BZOJ 求仙人掌的直径(两点之间最短路径最大值) 题解 一开始看错题了,以为是求仙人掌中的最长路径... 后来发现看错题了一下就改过来了.. ...

  3. bzoj1023: [SHOI2008]cactus仙人掌图

    学习了一下圆方树. 圆方树是一种可以处理仙人掌的数据结构,具体见这里:http://immortalco.blog.uoj.ac/blog/1955 简单来讲它是这么做的:用tarjan找环,然后对每 ...

  4. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  5. BZOJ1023 SHOI2008 仙人掌图 仙人掌、单调队列

    传送门 求仙人掌的直径,可以由求树的直径进行拓展,只需要在环上特殊判断. 沿用求树的直径的DP,对于一条不在任何环内的边,直接像树的直径一样转移,然后考虑环的影响. 设环长为\(cir\),在\(df ...

  6. BZOJ1023:[SHOI2008]cactus仙人掌图(圆方树,DP,单调队列)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus). 所谓简单回路就是指在图上不重复经过任何一个顶点 ...

  7. 2018.10.29 bzoj1023: [SHOI2008]cactus仙人掌图(仙人掌+单调队列优化dp)

    传送门 求仙人掌的直径. 感觉不是很难. 分点在环上面和不在环上分类讨论. 不在环上直接树形dpdpdp. 然后如果在环上讨论一波. 首先对环的祖先有贡献的只有环上dfsdfsdfs序最小的点. 对答 ...

  8. bzoj千题计划224:bzoj1023: [SHOI2008]cactus仙人掌图

    又写了一遍,发出来做个记录 #include<cstdio> #include<algorithm> #include<iostream> using namesp ...

  9. [bzoj1023][SHOI2008]cactus 仙人掌图 (动态规划)

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回 ...

随机推荐

  1. struts2类型转换中的错误处理

    由于类型转换过程中有可能出现原始参数无法转换为目标类型的错误,所以struts2提供了类型转换中的异常处理机制. 在struts2的默认配置文件struts-default.xml中有如下一段配置代码 ...

  2. eclipse下使用maven配置库托管jar包

    1.项目是通过maven配置库托管jar包 首先要保证maven配置库中有相应的jar包才能通过这个方法来添加jar包.maven的有点就是把要用到的jar包统一放在一个配置库中,在某个项目需要用到这 ...

  3. 对C++ Primer的10.3.9单词转换的思考

    这篇代码有几个知识点可以复习一下,而且小白学到了新知识o(╯□╰)o #include <iostream> #include <string> #include <ma ...

  4. MySQL分库分表备份脚本

    MySQL分库备份脚本 #脚本详细内容 [root@db02 scripts]# cat /server/scripts/Store_backup.sh #!/bin/sh MYUSER=root M ...

  5. discuz xplus 模板 没解析的问题

    <?xxx?> 模板中用得是短标签,没加php, 在php.ini中,把 open_short_tag = On ; 打开即可!浪费一上午的时间

  6. Cron运行原理

    from:http://blog.chinaunix.net/uid-20682147-id-4977039.html 目录 目录 1 1. 前言 1 2. 示例 1 3. 工作过程 2 4. 一个诡 ...

  7. 系统重装后phpnow修复

    最近在捣鼓wordpress,主题写了一半然后就重装了win8,在新系统里面访问127.0.0.1的时候出现无法访问的情况.主题写了一半,又不想重装wordpress导数据库这些繁琐的过程,于是,尝试 ...

  8. substring和substr的用法

    substring 方法用于提取字符串中介于两个指定下标之间的字符 substring(start,end) 开始和结束的位置,从零开始的索引 返回值是一个新的字符串,该字符串值包含 stringOb ...

  9. 在Yii2.0中实现计划任务(cron)

    以下由我们在信易网络公司开发项目的时候终结出的一些经验 Create console application 创建命令行应用 In advance template there is already ...

  10. ul动态增加li

    --> aaa bbb <%@ page language="java" import="java.util.*" pageEncoding=&qu ...