2244: [SDOI2011]拦截导弹

Time Limit: 30 Sec  Memory Limit: 512 MBSec  Special Judge
Submit: 237  Solved: 103
[Submit][Status][Discuss]

Description


国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度、并且能够拦截任意速度的导
弹,但是以后每一发炮弹都不能高于前一发的高度,其拦截的导弹的飞行速度也不能大于前一发。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所
以只有一套系统,因此有可能不能拦截所有的导弹。

在不能拦截所有的导弹的情况下,我们当然要选择使国家损失最小、也就是拦截导弹的数量最多的方案。但是拦截导弹数量的最多的方案有可能有多个,如果有多个最优方案,那么我们会随机选取一个作为最终的拦截导弹行动蓝图。

我方间谍已经获取了所有敌军导弹的高度和速度,你的任务是计算出在执行上述决策时,每枚导弹被拦截掉的概率。

Input

第一行包含一个正整数n,表示敌军导弹数量;

下面行按顺序给出了敌军所有导弹信息:

第i+1行包含2个正整数hi和vi,分别表示第枚导弹的高度和速度。

Output

输出包含两行。

第一行为一个正整数,表示最多能拦截掉的导弹数量;

第二行包含n个0到1之间的实数,第i个数字表示第i枚导弹被拦截掉的概率(你可以保留任意多位有效数字)。

Sample Input

4

3 30

4 40

6 60

3 30

Sample Output

2

0.33333 0.33333 0.33333 1.00000

【数据规模和约定】

对于100%的数据,1≤n≤5*104, 1≤hi ,vi≤109;

均匀分布着约30%的数据,所有vi均相等。

均匀分布着约50%的数据,满足1≤hi ,vi≤1000。

HINT

鸣谢kac提供sj程序!

  这次算是把cdq分治给搞懂了。这道题的做法网上的题解说的已经比较详细了,这里就不重复了。

  值得注意的是,随机选择最优方案和沿着最优方案等概率向后走是两个完全不同的东西,后者还要复杂一些,要正扫反扫正扫三遍分治,然而我居然写的就是那个。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAXN 100000
#define MAXT MAXN*4
#define lch (now<<1)
#define rch (now<<1^1)
#define smid ((l+r)>>1)
#define INF 0x3f3f3f3f
typedef double real;
struct aaa
{
aaa(){}
aaa(int x,int y,int id):x(x),y(y),id(id){}
int x,y;
int id;
}al[MAXN];
bool cmp_x(aaa a1,aaa a2)
{
return a1.x<a2.x;
}
bool cmp_y(aaa a1,aaa a2)
{
return a1.y<a2.y;
}
bool cmp_id(aaa a1,aaa a2)
{
return a1.id<a2.id;
}
struct bbb
{
int id;
int opt;
int x,y,pos;
int d;
//opt==1(Modify (x,y) [+/-])
//opt==2(Query [x,y] into z[+/-]);
}bl[MAXN],cl[MAXN];
bool cmp_bbb_x(bbb b1,bbb b2)
{
if (b1.x==b2.x)return b1.opt<b2.opt;
return b1.x<b2.x;
}
bool cmp_bbb_x2(bbb b1,bbb b2)
{
if (b1.x==b2.x)return b1.opt<b2.opt;
return b1.x>b2.x;
}
bool cmp_bbb_id(bbb b1,bbb b2)
{
return b1.id<b2.id;
}
int totb=;
int totnxt[MAXN];
int maxx,maxy;
pair<int,real> dpv[MAXN],dpv2[MAXN];
template<typename T> pair<int,T> deal(pair<int,T> p1,pair<int,T> p2)
{
if (p1.first==p2.first)
return make_pair(p1.first,p1.second+p2.second);
else if (p1.first<p2.first)
return p2;
else
return p1;
}
bool rev;
pair<int,real> tarr[MAXN];
void Add_tarr(int pos,pair<int,real> pr)
{
if (rev)pos=maxy+-pos;
while (pos<MAXN)
{
tarr[pos]=deal(tarr[pos],pr);
pos+=pos&(-pos);
}
}
void Clear_tarr(int pos)
{
if (rev)pos=maxy+-pos;
while (pos<MAXN)
{
tarr[pos]=make_pair(,);
pos+=pos&(-pos);
}
}
pair<int,real> Qry_tarr(int pos)
{
if (rev)pos=maxy+-pos;
pair<int,real> ret=make_pair(-INF,);
while (pos)
{
ret=deal(ret,tarr[pos]);
pos-=pos&(-pos);
}
return ret;
}
void solve(int l,int r)
{
if (l==r)return ;
int mid=(l+r)>>;
solve(l,mid);
int totc=;
for (int i=l;i<=mid;i++)
if (bl[i].opt==)
cl[totc++]=bl[i];
for (int i=mid+;i<=r;i++)
if (bl[i].opt==)
cl[totc++]=bl[i];
if (rev)
sort(cl,cl+totc,cmp_bbb_x2);
else
sort(cl,cl+totc,cmp_bbb_x);
for (int i=;i<totc;i++)
{
if (cl[i].opt==)
{
Add_tarr(cl[i].y,dpv[cl[i].pos]);
}else if (cl[i].opt==)
{
pair<int,real> res=Qry_tarr(cl[i].y);
res.first++;
dpv[cl[i].pos]=deal(dpv[cl[i].pos],res);
}
}
for (int i=;i<totc;i++)
{
if (cl[i].opt==)
{
Clear_tarr(cl[i].y);
}
}
sort(bl+l,bl+r+,cmp_bbb_id);
solve(mid+,r);
} int main()
{
freopen("input.txt","r",stdin);
int n,m,x,y,z;
scanf("%d",&n);
al[]=aaa(INF/,INF/,);
for (int i=;i<=n;i++)
{
scanf("%d%d",&al[i].x,&al[i].y);
al[i].id=i;
}
n++;
al[n]=aaa(-INF/,-INF/,n);n++;
sort(al,al+n,cmp_x);
x=-INF;y=;
for (int i=;i<n;i++)
{
if (al[i].x!=x)y++;
x=al[i].x;
al[i].x=y;
}
maxx=y;
sort(al,al+n,cmp_y);
x=-INF,y=;
for (int i=;i<n;i++)
{
if (al[i].y!=x)y++;
x=al[i].y;
al[i].y=y;
}
maxy=y;
sort(al,al+n,cmp_id);
//====================================
totb=;
for (int i=n-;i>=;i--)
{
bl[totb].opt=;
bl[totb].x=al[i].x;
bl[totb].y=al[i].y;
bl[totb].pos=i;
bl[totb].d=;
bl[totb].id=totb;
totb++;
bl[totb].opt=;
bl[totb].x=al[i].x;
bl[totb].y=al[i].y;
bl[totb].pos=i;
bl[totb].id=totb;
totb++;
}
dpv[n-]=make_pair(,);
solve(,totb-);
//for (int i=0;i<n;i++)printf("%d %.2lf\n",dpv[i].first,dpv[i].second);
memcpy(dpv2,dpv,sizeof(dpv));
memset(dpv,,sizeof(dpv2));
totb=;
for (int i=;i<n;i++)
{
bl[totb].opt=;
bl[totb].x=al[i].x;
bl[totb].y=al[i].y;
bl[totb].pos=i;
bl[totb].id=totb;
totb++;
bl[totb].opt=;
bl[totb].x=al[i].x;
bl[totb].y=al[i].y;
bl[totb].pos=i;
bl[totb].id=totb;
totb++;
}
dpv[]=make_pair(,);
rev=true;
solve(,totb-);
//for (int i=0;i<n;i++)printf("%d %.2lf\n",dpv[i].first,dpv[i].second);
printf("%d\n",dpv[n-].first-);
for (int i=;i<n-;i++)
if (dpv[i].first+dpv2[i].first!=dpv[n-].first)
printf("%.5lf ",0.0);
else
printf("%.5lf ",dpv[i].second*dpv2[i].second/dpv[n-].second);
}

bzoj 2244: [SDOI2011]拦截导弹 cdq分治的更多相关文章

  1. BZOJ 2244: [SDOI2011]拦截导弹 (CDQ分治 三维偏序 DP)

    题意 略- 分析 就是求最长不上升子序列,坐标取一下反就是求最长不下降子序列,比较大小是二维(h,v)(h,v)(h,v)的比较.我们不看概率,先看第一问怎么求最长不降子序列.设f[i]f[i]f[i ...

  2. BZOJ 2244: [SDOI2011]拦截导弹 [CDQ分治 树状数组]

    传送门 题意:三维最长不上升子序列以及每个元素出现在最长不上升子序列的概率 $1A$了好开心 首先需要从左右各求一遍,长度就是$F[0][i]+F[1][i]-1$,次数就是$G[0][i]*G[1] ...

  3. BZOJ 2244 [SDOI2011]拦截导弹 ——CDQ分治

    三维偏序,直接CDQ硬上. 正反两次CDQ统计结尾的方案数,最后统计即可. #include <cstdio> #include <cstring> #include < ...

  4. BZOJ 2244: [SDOI2011]拦截导弹 DP+CDQ分治

    2244: [SDOI2011]拦截导弹 Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截 ...

  5. [BZOJ2244][SDOI2011]拦截导弹 CDQ分治

    2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec  Memory Limit: 512 MB  Special Judge Description 某国为了防御敌国的导弹 ...

  6. bzoj 2244 [SDOI2011]拦截导弹(DP+CDQ分治+BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2244 [题意] 给定n个二元组,求出最长不上升子序列和各颗导弹被拦截的概率. [思路] ...

  7. BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)

    Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...

  8. bzoj 2244: [SDOI2011]拦截导弹

    #include<cstdio> #include<iostream> #include<algorithm> #define M 100009 using nam ...

  9. bzoj 2244 [SDOI2011]拦截导弹(dp+CDQ+树状数组)

    传送门 题解 看了半天完全没发现这东西和CDQ有什么关系…… 先把原序列翻转,求起来方便 然后把每一个位置表示成$(a,b,c)$其中$a$表示位置,$b$表示高度,$c$表示速度,求有多少个位置$a ...

随机推荐

  1. ArrayList的实现原理--转

    1. ArrayList概述: ArrayList是List接口的可变数组的实现.实现了所有可选列表操作,并允许包括 null 在内的所有元素.除了实现 List 接口外,此类还提供一些方法来操作内部 ...

  2. Nginx高性能服务器安装、配置、运维 (2) —— Nginx安装

    三.Nginx 安装 使用SecureCRT以Root身份登录阿里云,在安装Nginx前先做好阿里云磁盘挂载 -------------- 挂载磁盘 -------------- 1.df -h #显 ...

  3. 九度 1371 最小的K个数

    题目描述:输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4,. 输入: 每个测试案例包括2行:第一行为2个整数n,k(1<= ...

  4. VBA控件ListBox的BoundColumn和TextColumn用法,Value和Text的用法

    在使用Excel编写VBA程序时,用到ListBox,然后研究了下它的所有属性.其实这个控件功能很不好用,太老了,最重要的是还不支持鼠标滚轮,很不好操作,但是考虑到兼容性,还是使用它. 其实读取.写入 ...

  5. YII中面包屑制作(当前位置:网站首页 >> 会员登陆)

    面包屑制作(当前位置:网站首页 >> 会员登陆) 作用:就是在布局里要显示的信息,但这个信息在不同的页面里显示的内容不一样,例如:网页的title.网页的当前位置等等 1.布局中每个页面t ...

  6. python tornado+mongodb的使用

    tornado tar xvzf tornado-1.2.1.tar.gz cd tornado-1.2.1 python setup.py build sudo python setup.py in ...

  7. ACM——进制转换

    http://acm.njupt.edu.cn/acmhome/problemdetail.do?&method=showdetail&id=1012 进制转换 时间限制(普通/Jav ...

  8. 【转】【SQLServer】SQL Server 2008“阻止保存要求重新创建表的更改”

    不是很理解为什么在2008中会加入阻止保存要求重新创建表的更改这个选项.症状表现为修改表结构的时候会"阻止"你.而且我遇到的情况是居然有的时候阻止你,有的时候不阻止你,摸不到头脑. ...

  9. JS中的replace方法以及与正则表达式的结合应用

    replace方法的语法是:stringobj.replace(rgexp, replacetext) 其中stringobj是字符串(string),reexp可以是正则表达式对象(regexp)也 ...

  10. java内存

    java内存分为四部分: 1).栈区(stacksegment),由编译器自动分配释放,存放函数的参数值和局部变量的值等,具体方法执行结束之后,系统自动释放JVM内存资源: 2).堆区(heapseg ...