UVA10518 - How Many Calls?(矩阵高速幂)

题目链接

题目大意:给你fibonacci数列怎么求的。然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用,而且这个数非常大,取模一个进制的数。

解题思路:要发现F(n) = 2 *f(n) - 1这个规律。预计要非常熟系fibonacci数列,我明明推出了好多项后可是一点也没有发现规律。

然后要用矩阵高速幂来求fibonacci。由于n非常大。

构造这种矩阵

1, 1 (2*2矩阵) *  f(n - 1) (2*1矩阵) 等于 f(n - 1) + f(n - 2)(2*1矩阵)

1。 0                          f (n - 2)                             f(n - 1) 





这样就能够用前面的那么系数矩阵的n次幂乘上f(1) 这个矩阵得到最后想要的答案。

f(0)

代码:

#include <cstdio>
#include <cstring> typedef long long ll;
const int maxn = 2;
int base; struct Mat { int s[maxn][maxn]; void init () {
s[0][0] = s[0][1] = s[1][0] = 1;
s[1][1] = 0;
} Mat operator ^ (const Mat& t) const { Mat arr;
memset (arr.s, 0, sizeof(arr.s)); for (int i = 0; i < maxn; i++)
for (int j = 0; j < maxn; j++)
for (int k = 0; k < maxn; k++)
arr.s[i][j] = (arr.s[i][j] + s[i][k] * t.s[k][j]) % base;
return arr;
}
}; Mat Fmod (ll n, Mat a) { if (n == 1)
return a; Mat tmp = Fmod(n/2, a);
tmp = tmp ^ tmp;
if (n % 2 == 1)
tmp = tmp ^ a; /* printf ("%lld\n", n);
for (int i = 0; i < maxn; i++)
printf ("%d %d\n", tmp.s[i][0], tmp.s[i][1]);*/
return tmp;
} int main () { ll n;
int cas = 0;
Mat a, ans; while (scanf ("%lld%d", &n, &base) && (n || base)) { a.init();
if (n)
ans = Fmod(n, a);
else
ans = a;
printf ("Case %d: %lld %d %d\n", ++cas, n, base, (ans.s[0][0] * 2 + base - 1) % base);
}
return 0;
}

UVA10518 - How Many Calls?(矩阵高速幂)的更多相关文章

  1. UVA10518 How Many Calls? —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10518 题解: 问:求斐波那契数f[n]的时候调用了多少次f[n] = f[n-1] + f[n-2],没有记忆化,一直递归 ...

  2. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  3. HDU2842-Chinese Rings(递推+矩阵高速幂)

    pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...

  4. HDU2276 - Kiki &amp; Little Kiki 2(矩阵高速幂)

    pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...

  5. uva 10655 - Contemplation! Algebra(矩阵高速幂)

    题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...

  6. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  7. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  8. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  9. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

随机推荐

  1. Cocoapod安装 - 管理第三方库

    在我们开发移动应用的时候,一般都会使用到第三方工具,而由于第三方类库的种类繁多,我们在项目中进行管理也会相对麻烦,所以此时我们就需要一个包管理工具,在iOS开发中,我们使用最多的就是Cocoapods ...

  2. 最浅显、易懂的Linux 硬链接与软链接的理解

    正文: Linux上的文件可以这么理解:文件-->文件名.文件是一个Object,也就是磁盘上的二进制数据.一个文件可以有多个文件名,平时我们都是通过文件名访问文件Object. 这样,硬链接可 ...

  3. Java ,单实例 多线程 ,web容器,servlet与struts1-2.x系列,线程安全的解决

    1.Servlet是如何处理多个请求同时访问呢? 回答:servlet是默认采用单实例,多线程的方式进行.只要webapp被发布到web容器中的时候,servlet只会在发布的时候实例化一次,serv ...

  4. 反射实体自动生成EasyUi DataGrid模板 第二版--附项目源码

    之前写过一篇文章,地址 http://www.cnblogs.com/Bond/p/3469798.html   大概说了下怎么通过反射来自动生成对应EasyUi datagrid的模板,然后贴了很多 ...

  5. 深入浅出Z-Stack 2006 OSAL多任务资源分配机制

    转自深入浅出Z-Stack 2006 OSAL多任务资源分配机制 一.概述 OSAL (Operating System Abstraction Layer),翻译为"操作系统抽象层&quo ...

  6. eclipse中配置c++开发环境 Eclipse + CDT + MinGW

    转自eclipse中配置c++开发环境 Eclipse + CDT + MinGW 基本框架:Eclipse + CDT + MinGW 背景知识: CDT:CDT 是完全用 Java 实现的开放源码 ...

  7. Web 安全之内容安全策略 (CSP)

    内容安全策略 (CSP, Content Security Policy) 是一个附加的安全层,用于帮助检测和缓解某些类型的攻击,包括跨站脚本攻击 (XSS) 和数据注入等攻击. 这些攻击可用于实现从 ...

  8. 【HDU 2255】奔小康赚大钱 (最佳二分匹配KM算法)

    奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  9. [LeetCode] Burst Balloons (Medium)

    Burst Balloons (Medium) 这题没有做出来. 自己的思路停留在暴力的解法, 时间复杂度很高: 初始化maxCount = 0. 对于当前长度为k的数组nums, 从0到k - 1逐 ...

  10. eMMC(KLM8G2FE3B)

     Tiny4412原理图中,eMMC是169-PIN,资料中对应内存为16/32G:而用户手册上eMMC内存为4G,对应的是153-PIN?    原理图中上标注:KLM8G2FE3B-B001_1. ...