CF135E Weak Subsequence (计数问题)
题目大意:对于给定字符集大小k,求有多少个字符串满足它的最长【既是子串又是弱子序列】的长度为w;
神仙计数题
打表发现,对于字符串S而言,它的最长【既是子串又是弱子序列】,一定存在一个对应的子串,是S的前缀或者后缀
如果不是前缀或者后缀,那么它一定还可以向两边扩展
这启示我们分类讨论
容易发现,最优的情况一定是除了最后一位以外,其它每个字符都在相同的位置取,最后一位在其他位置取来构成弱子序列。
我们重点考虑最后一位带来的影响,
假设现在我们找到了一个字符串$w$作为子串,在后面接上一段字符串$L$
我们要保证$w$是最长的【既是子串又是弱子序列】才能正确地统计答案
1.$L$中一定存在一个字符和第$w$个字符相等
2.$L$中每个字符都不相等,否则继续向前取还能更长
3.前$L$个字符互不相等,否则从后面开始取能更长
有了这三个条件,我们就可以开始讨论了:
1.$w-L\geq 2$时,把序列分成5块,$[1,L], L+1, [L+2,w-1], w, [w+1,w+L]$
$[1,L]$存在一个字符和第L+1位相等,$[w+1,w+L]$位存在一个字符和第$w$位相等,两种情况取交集,可得答案为:
$k^{w-L-2}((A_{k}^{L})^{2}k^{2}-(A_{k}^{L+1})^{2})$
中间$w-L-2$个随便取,两边$L$个分别从$k$个里取且互不相等,第$L+1$个和第$w$个先假设随便取,再去掉两边都没有相同的情况
2.$w-L=1$时,把序列分成3块,$[1,L], w, [w+1,w+L]$
$[1,L]$位存在一个字符和第$w$位相等,$[w+1,w+L]$位存在一个字符和第$w$位相等,取交集,答案为:
$k(A_{k}^{L})^{2}-A_{k}^{L+1}A_{k-1}^{L}$
比上面的情况还要简单,不解释了
3.$w\leq L$时,把序列分成5块,$[1,w-1], w, [w+1,L], L+1, [L+2,L+w]$
这种情况就比较复杂了,但大体思路不变
首先,中间$[w+1,L]$一共$L-w$个,是从$k$个里随便取的且互不相同,贡献是$A_{k}^{L-w}$
左右两边$w$个都是从$k-(L-w)$里随便取,贡献是$A_{k-(L-w)}^{w}$
两边都没有的情况的贡献呢?
$w, [w+1,L], L+1$都互不相同,贡献是$A_{k}^{L-w+2}$。前后$w-1$个都和中间$[w,L+1]$个互不相同,贡献是$A_{k-(L-w+2)}^{w-1}$
总贡献就是$A_{k}^{L-w}(A_{k-(L-w)}^{w})^{2}-A_{k}^{L-w+2}(A_{k-(L-w+2)}^{w-1})^{2}$
$L$里每个元素互不相同,所以长度最大就是$k$,暴力枚举然后计算即可
#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define N1 1000010
using namespace std;
const ll p=; ll mul[N1],_mul[N1],inv[N1];
int m,K,n;
inline ll C(int x,int y)
{
if(y>x) return ;
return mul[x]*_mul[y]%p*_mul[x-y]%p;
}
inline ll A(int x,int y)
{
if(y>x) return ;
return mul[x]*_mul[x-y]%p;
}
ll qpow(ll x,ll y)
{
if(y<) return ; ll ans=;
for(;y;x=x*x%p,y>>=) if(y&) ans=ans*x%p;
return ans;
} int main()
{
scanf("%d%d%d",&m,&K,&n);
int i,j,L;
mul[]=mul[]=_mul[]=_mul[]=inv[]=inv[]=;
for(i=;i<=K;i++) mul[i]=mul[i-]*i%p, inv[i]=1ll*(p-p/i)*inv[p%i]%p, _mul[i]=_mul[i-]*inv[i]%p;
ll ans=;
for(L=;L<=K&&n+L<=m;L++)
{
if(n-L>=) (ans+=qpow(K,n-L-)*(1ll*K*K%p*A(K,L)%p*A(K,L)%p-A(K,L+)*A(K,L+)%p+p)%p)%=p;
else if(n-L==) (ans+=(1ll*K*A(K,L)%p*A(K,L)%p-A(K,L+)*A(K-,L)%p+p)%p)%=p;
else (ans+=(1ll*A(K,L-n)*A(K-(L-n),n)%p*A(K-(L-n),n)%p-A(K,L-n+)*A(K-(L-n+),n-)%p*A(K-(L-n+),n-)%p)%p)%=p;
}
printf("%lld\n",(ans%p+p)%p);
return ;
}
CF135E Weak Subsequence (计数问题)的更多相关文章
- @property中的copy.strong.weak总结
1.NSString类型的属性为什么用copy NSString类型的属性可以用strong修饰,但会造成一些问题,请看下面代码 #import "ViewController.h" ...
- [LeetCode] Arithmetic Slices II - Subsequence 算数切片之二 - 子序列
A sequence of numbers is called arithmetic if it consists of at least three elements and if the diff ...
- [LeetCode] Is Subsequence 是子序列
Given a string s and a string t, check if s is subsequence of t. You may assume that there is only l ...
- [LeetCode] Wiggle Subsequence 摆动子序列
A sequence of numbers is called a wiggle sequence if the differences between successive numbers stri ...
- [LeetCode] Increasing Triplet Subsequence 递增的三元子序列
Given an unsorted array return whether an increasing subsequence of length 3 exists or not in the ar ...
- [LeetCode] Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- weak和nonull
weak和nonull是相互排斥的,所以weak和null不能同时使用,如下图:
- iOS中assign,copy,retain之间的区别以及weak和strong的区别
@property (nonatomic, assign) NSString *title; 什么是assign,copy,retain之间的区别? assign: 简单赋值,不更改索引计数(Refe ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
随机推荐
- 【SSH之旅】一步步学习Hibernate框架(一):关于持久化
在不引用不论什么框架下,我们会通过平庸的代码不停的对数据库进行操作,产生了非常多冗余的可是又有规律的底层代码,这样频繁的操作数据库和大量的底层代码的反复书写极大的浪费了程序人员的书写.就在这样一种情况 ...
- NJUPT JAVA语言 流处理程序设计
一. 实验目的和要求 实验目的和要求:要求学生能在学习和理解课堂学习内容中JAVA流编程理论的基础上,学习并逐步掌握JAVA流程序的编写和调试,学习依据处理需求对不同流的正确选择使用和组合用法. 实验 ...
- hdu 1874 畅通project续
最短路问题,尽管a!=b,可是同一条路測评数据会给你非常多个.因此在读入的时候要去最短的那条路存起来.........见了鬼了.坑爹 #include<iostream> #include ...
- 解析Qt元对象系统(五) Q_INVOKABLE与invokeMethod(automatic connection从Qt4.8开始的解释已经与之前不同,发送对象驻足于哪一个线程并不重要,起到决定作用的是接收者对象所驻足的线程以及发射信号(该信号与接受者连接)的线程是不是在同一个线程)good
概述查看Qt源码可知,Q_INVOKABLE是个空宏,目的在于让moc识别. 使用Q_INVOKABLE来修饰成员函数,目的在于被修饰的成员函数能够被元对象系统所唤起. Q_INVOKABLE与QMe ...
- RPC通信框架——RCF介绍
现有的软件中用了大量的COM接口,导致无法跨平台,当然由于与Windows结合的太紧密,还有很多无法跨平台的地方.那么为了实现跨平台,支持Linux系统,以及后续的分布式,首要任务是去除COM接口. ...
- VS2010中文注释带红色下划线的解决方法
环境:Visual Studio 2010 问题:代码中出现中文后会带下划线,很多时候感觉很不舒服.找了很久的原因没找到,后来无意中在VisualAssist X里找到了解决办法. 1.安装完Visu ...
- PCB MS SQL 将字符串分割为表变量(表值函数)
Create FUNCTION [dbo].[SplitTable]( @s varchar(max), --待分拆的字符串 ) --数据分隔符 ),), col varchar(max)) --建立 ...
- 2205 等差数列(dp)
2205 等差数列 时间限制: 1 s 空间限制: 32000 KB 题目等级 : 钻石 Diamond 题目描述 Description 等差数列的定义是一个数列S,它满足了(S[i] ...
- hdu3853LOOPS(概率与期望dp)
LOOPS Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 125536/65536 K (Java/Others)Total Sub ...
- selenium3 + python - cookie定位
from selenium import webdriverfrom selenium.webdriver.support.wait import WebDriverWaitimport time d ...