使用caffemodel模型(由mnist训练)测试单张手写数字样本
caffe中训练和测试mnist数据集都是批处理,可以反馈识别率,但是看不到单张样本的识别效果,这里使用windows自带的画图工具手写制作0~9的测试数字,然后使用caffemodel模型识别。
1. 打开画图工具,设置画板宽高为28*28,然后分别画出0~9的数字,分别保存为0~9.bmp文件。
宽高属性修改:
手写的10个数字:
画图工具保存的这10张手写数字图像是彩色三通道的,需要转换成单通道灰度图像,这个转换可以通过OpenCV完成。
2. 使用OpenCV转换灰度图像
OpenCV的imread函数的第二个参数设置为0,会把读入的图像自动转换成灰度图像。
强调一点是,mnist的训练和测试数据集都是黑底白字的,而用画图制作的图像是白底黑字的,所以要做一个底色的变换,要不然识别率很低。以下是处理程序:
#include <iostream>
#include <highgui/highgui.hpp>
#include <imgproc/imgproc.hpp>
using namespace std;
using namespace cv;
void main()
{
Mat image;
stringstream str;
//0~9.bmp图像保存路径
string pathFile = "D:\\Software\\Caffe\\caffe-master\\examples\\mnist\\data\\";
string s;
for (int i = 0; i < 10; i++)
{
str.clear();
str << i;
string str1;
str >> str1;
s = pathFile + str1;
s += ".bmp";
image = imread(s, 0);
threshold(image, image, 0, 255, CV_THRESH_OTSU);
//图像做底色反转变换
image = ~image;
//转换的二值图像保存在同一个文件夹下,在名称前加0区分
s = "";
s = pathFile + "0" + str1+".bmp";
imwrite(s, image);
}
}
完成之后在data目录下新生成00~09.bmp(黑底白字)共10个二值图像。
3. 单张手写样本测试
在.\examples\mnist目录下新建一个标签文件synset_words.txt,输入以下内容:
在caffe-master目录下新建一个mnist-class.bat脚本文件,输入以下内容:
for /l %%i in (0,1,9) do (.\Build\x64\Debug\classification.exe .\examples\mnist\lenet.prototxt .\examples\mnist\CaffeModel\lenet_iter_10000.caffemodel .\examples\mnist\mean.binaryproto .\examples\mnist\synset_words.txt .\examples\mnist\data\0%%i.bmp
)
pause
双击运行,得到识别结果,0~9都可以正确识别:
使用caffemodel模型(由mnist训练)测试单张手写数字样本的更多相关文章
- 07 训练Tensorflow识别手写数字
打开Python Shell,输入以下代码: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input ...
- mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)
前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...
- 基于tensorflow的MNIST手写数字识别(二)--入门篇
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...
- caffe_手写数字识别Lenet模型理解
这两天看了Lenet的模型理解,很简单的手写数字CNN网络,90年代美国用它来识别钞票,准确率还是很高的,所以它也是一个很经典的模型.而且学习这个模型也有助于我们理解更大的网络比如Imagenet等等 ...
- 持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型
持久化的基于L2正则化和平均滑动模型的MNIST手写数字识别模型 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tens ...
- TensorFlow下利用MNIST训练模型识别手写数字
本文将参考TensorFlow中文社区官方文档使用mnist数据集训练一个多层卷积神经网络(LeNet5网络),并利用所训练的模型识别自己手写数字. 训练MNIST数据集,并保存训练模型 # Pyth ...
- TensorFlow------单层(全连接层)实现手写数字识别训练及测试实例
TensorFlow之单层(全连接层)实现手写数字识别训练及测试实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist ...
- Tensorflow可视化MNIST手写数字训练
简述] 我们在学习编程语言时,往往第一个程序就是打印“Hello World”,那么对于人工智能学习系统平台来说,他的“Hello World”小程序就是MNIST手写数字训练了.MNIST是一个手写 ...
- 【百度飞桨】手写数字识别模型部署Paddle Inference
从完成一个简单的『手写数字识别任务』开始,快速了解飞桨框架 API 的使用方法. 模型开发 『手写数字识别』是深度学习里的 Hello World 任务,用于对 0 ~ 9 的十类数字进行分类,即输入 ...
随机推荐
- 洛谷——P2822 组合数问题
https://www.luogu.org/problem/show?pid=2822 题目描述 组合数C_n^mCnm表示的是从n个物品中选出m个物品的方案数.举个例子,从(1,2,3) 三 ...
- POJ 2154
这题的时间卡的.... 必须用欧拉来优化,而且要加素数表.最重要是,因为最后结果要/n,而数据很大,所以,必须在之前就先/n了,否则会爆数据. #include <iostream> #i ...
- c#将List<T>转换成DataSet
/// <summary> /// List<T> 转换成DataSet /// </summary> /// &l ...
- adt-bundle-windows加入NDK支持
近期换了个硬盘,曾经都是用eclipse安装adt插件的,如今老了,图省事就下载了adt-bundle-windows,解压缩出来就直接用.但是这个adt-bundle没有集成NDK支持,于是手动安装 ...
- YII 数据库查询
$userModel = User::Model(); $userModel->count(); $userModel->count($condition); $userModel-> ...
- 三种SVM的对偶问题
一.SVM原问题及要变成对偶问题的解决办法 对于SVM的,我们知道其终于目的是求取一分类超平面,然后将新的数据带入这一分类超平面的方程中,推断输出结果的符号,从而推断新的数据的正负. 而求解svm分类 ...
- java中的输入输出<1>
java中的输入输出基础(1) java中的IO支持通过java.io包下的类和接口来支持.在java.io包下主要包括输入.输出两种io流,每种输入.输出流又分为字节流和字符流. 字节流就是以字节为 ...
- linux ps 命令查看进程状态
显示其他用户启动的进程(a) 查看系统中属于自己的进程(x) 启动这个进程的用户和它启动的时间(u) 使用“date -s”命令来修改系统时间 比如将系统时间设定成1996年6月10日的命令如下. # ...
- BZOJ 2588 主席树
思路: 主席树 做完BZOJ 3123 觉得这是道水啊-- 然后狂RE 狂MLE 要来数据 忘把deep[1]设成1了----------. 啊wocccccccccccccccc //By Siri ...
- P3809 【模版】后缀排序
题目背景 这是一道模版题. 题目描述 读入一个长度为 nn 的由大小写英文字母或数字组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第一个字符在原串中的位置.位置编 ...