Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10798   Accepted: 4626

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular
path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only
travel on Official Paths when they move from one field to another. 



Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate
routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 



There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 



Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 



One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 

Every pair of fields is, in fact, connected by two routes. 



It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

下面解析来自:女神的博客

斌神博客上有个不错的总结:斌神的博客

大致题意:

为了保护放牧环境,避免牲畜过度啃咬同一个地方的草皮,牧场主决定利用不断迁移牲畜进行喂养的方法去保护牧草。然而牲畜在迁移过程中也会啃食路上的牧草,所以假设每次迁移都用同一条道路,那么该条道路相同会被啃咬过度而遭受破坏。

如今牧场主拥有F个农场。已知这些农场至少有一条路径连接起来(不一定是直接相连)。但从某些农场去另外一些农场。至少有一条路可通行。为了保护道路上的牧草,农场主希望再建造若干条道路,使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。

已知当前有的R条道路。问农场主至少要新建造几条道路,才干满足要求?

解题思路:

“使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。”就是说当吧F个农场看作点、路看作边构造一个无向图G时,图G不存在桥。

那么能够建立模型:

给定一个连通的无向图G,至少要加入几条边。才干使其变为双连通图。

当图G存在桥(割边)的时候,它必然不是双连通的。桥的两个端点必然分别属于图G的两个【边双连通分量】。一旦删除了桥,这两个【边双连通分量】必然断开,图G就不连通了。可是假设在两个【边双连通分量】之间再加入一条边。桥就不再是桥了。这两个【边双连通分量】之间也就是双连通了。



那么假设图G有多个【边双连通分量】呢?至少应该加入多少条边,才干使得随意两个【边双连通分量】之间都是双连通(也就是图G是双连通的)

1、 首先要找出图G的全部【边双连通分量】。

2、 把每个【边双连通分量】都看做一个点(即【缩点】)

3、 问题再次被转化为“至少在缩点树上添加多少条树边。使得这棵树变为一个双连通图”。

首先知道一条等式:

若要使得随意一棵树。在添加若干条边后。变成一个双连通图,那么

至少添加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#define maxn 5010
#define maxm 20010
using namespace std; int n, m;
struct node {
int u, v, next;
};
node edge[maxm];
//缩点后形成树,每一个点的度数
int du[maxn];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
//Belong数组的值是 1 ~ ebc_block
int Stack[maxn], Belong[maxn];
int ebc_block;//边双连通块数
int dfs_clock;
int top;//模拟栈的指针
bool Instack[maxn]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
while(m--){
int a, b;
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
} void tarjan(int u, int pre){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
int have = 1;
for(int i = head[u]; i != -1; i = edge[i].next){
v = edge[i].v;
if(have && v == pre){//去重边
have = 0;
continue;
}
if(!dfn[v]){
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u]){
ebc_block++;
do{
v = Stack[--top];
Instack[v] = false;
Belong[v] = ebc_block;
}
while(v != u);
}
} void suodian(){
memset(du, 0, sizeof(du));
for(int i = 0; i < cnt; i += 2 ){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v)
du[u]++, du[v]++;
}
} void find(){
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(Instack, false, sizeof(Instack));
memset(Belong, 0, sizeof(Belong));
dfs_clock = 0;
ebc_block = 0;
top = 0;
tarjan(1, -1);//连通图
} void solve(){
int ans = 0;
if(ebc_block == 1){
printf("0\n");
return ;
}
for(int i = 1; i <= ebc_block; ++i)
if(du[i] == 1) ans++;
printf("%d\n", (ans + 1) / 2);
} int main (){
while(scanf("%d%d", &n, &m) != EOF){
init();
getmap();
find();
suodian();
solve();
}
return 0;
}

POJ 3177--Redundant Paths【无向图添加最少的边成为边双连通图 &amp;&amp; tarjan求ebc &amp;&amp; 缩点构造缩点树】的更多相关文章

  1. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

  2. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  3. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  4. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  5. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  6. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  7. POJ 3177 Redundant Paths (tarjan边双连通分量)

    题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...

  8. POJ 3177 Redundant Paths POJ 3352 Road Construction

    这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...

  9. POJ 3177 Redundant Paths(强连通分量)

    题目链接:http://poj.org/problem?id=3177 题目大意是一个无向图给你n个点m条边,让你求出最少加多少条边 可以让任意两个点相通两条及以上的路线(每条路线点可以重复,但是每条 ...

随机推荐

  1. 控制台中使用SetTimer的提醒

    SetTimer是设置定时器,每隔一段时间执行一个操作,原型如下 UINT_PTR SetTimer( HWND hWnd, // 窗口句柄 UINT_PTR nIDEvent, // 定时器ID,多 ...

  2. luogu2429 制杖题

    题目大意 求不大于 m 的. 质因数集与给定有n个元素的质数集有交集的自然数之和. 数据范围 1 2 3 n*m<=10^7 4 5 n<=2,m<=10^9 6 7 n<=2 ...

  3. SVGImageView

    In essence, I'm trying to layer multiple ImageViews (one of which is a floor plan, the other a recta ...

  4. CodeForces 651A(水题)

    Friends are going to play console. They have two joysticks and only one charger for them. Initially ...

  5. 分析AWR报告

    1.AWR报告头信息 DB Name :数据库名字 DBid: 数据库id Elapsed:采样时间段 DB Time:用户操作花费的时间,不包括Oracle后台进程消耗的时间 DB Time远小于E ...

  6. 爬虫中之Requests 模块的进阶

    requests进阶内容 session处理cookie proxies参数设置请求代理ip 基于线程池的数据爬取 引入 有些时候,我们在使用爬虫程序去爬取一些用户相关信息的数据(爬取张三“人人网”个 ...

  7. BZOJ 2729 高精度+组合数学

    思路: 考虑 把男生排成一排 女生和老师往里插 分成两种情况. 1. 女生中间夹着老师 2. 女生中间没有夹着老师 求一下组合* 阶乘就好了 先放Python代码 简洁易懂 def fact(n): ...

  8. 第一个Hibernate程序

    一 新建一个Java工程(Hibernate) 在src目录下创建一个名为"hibernate.cfg.xml"的文件并配置好各个属性,如下: <?xml version=& ...

  9. html中map标签和area标签的应用

    map标签的用途:是与img标签绑定使用的,常被用来赋予给客户端图像某处区域特殊的含义,点击该区域可跳转到新的文档. 因为map标签是与img标签绑定使用的,所以我们需要给map标签添加ID和name ...

  10. javascript时间戳转换成yyyy-MM-DD格式

    最近开发中需要和后端进日期和时间传值,前后端约定为时间戳的格式,但是前端展示需要展示成年-月-日的格式.就需要进行日期和时间转换格式.自己总结两个方式就行转换. 一,new Date(时间戳).for ...