向量和矩阵

什么是矩阵/向量?

Vectors and matrix are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightness, etc. We'll define some common uses and standard operations on them.

向量:列向量/行向量

用处:

  • Vectos can represented an offset in 2D or 3D space; points are just vectors from the origion
  • data(pixels, gradient at an image key point)can be treated as a vector

矩阵:在python中图像被表示为像素亮度矩阵, grayscale(m*n), color(m*n*3)

算术运算:

  • addition
  • scaling
  • norm: vector/matrix

  • inner prodcut/dot product of vectors
  • product of matrix
  • transpose
  • determinant

通常任何满足以下四种性质的函数都可以作为范数:

  • 非负性
  • 正定性
  • 齐次性
  • 三角不等式

特殊矩阵

  • 单位阵
  • 对角阵
  • 对称阵
  • 反对阵矩阵

变换矩阵

矩阵可以用来对向量进行变换

  • scaling
  • rotation

齐次系统/齐次坐标:

变换矩阵最右列被加到原有向量中

这里有时候会用到前面看的仿射矩阵affine matrix 的知识(见参考资料):

平移(translation):

缩放(scaling)

旋转(rotation)

平移旋转缩放

矩阵的逆

如果A的逆存在,A是可逆的或者是非奇异的non-singular; 否则是不可逆或者是奇异的.

伪逆(pseudoinverse):在计算大型矩阵逆的时候,会伴随这浮点数问题,而且不是每个矩阵都有逆

np.linalg(A,B) to solve AX = B

如果没有具体解, 返回最近的一个解

如果有多个解,返回最小的那个解

阵的阶

the rank of a transforamtion matrix tells you hwo many dimensions it transforms a vector to.

满秩; m*m 矩阵,阶数为m

阶数 < 5, 奇异矩阵,逆不存在

非方阵没有逆

特征值和特征向量

what is eigenvector?

An eigenvector x of a linear transformation A is a non-zero vector that when A is applied to it, does not change direction. And only scales the eigenvector by the scalar value \lambda, called an eigenvalue.

$$Ax = \lambda x$$

$Ax = (\lambda I)x,  \rightarrow (\lambda I - A)x = 0$, $x$ is non-zero, thus,  $|(\lambda I - A)| = 0$

性质:

  • $tr(A) = \sum_{i=1}^n \lambda_i$
  • $|A| = \prod_{i=1}^n \lambda_i$
  • the rank of A is equal to the number of non-zero eigenvalues of A
  • the eigenvalues of a diagonal matrix $D = diag(d_1,...d_n)$ are just the diagonal entries $d_1, ..., d_n$

分形理论(spectral theroy)

对角化(diagonalization)

如果n*n矩阵有n个线性独立的特征向量,则它是可对角化的

如果n*n矩阵有n个不同的特征值,则它是可对角化的

对应着不同特征值的特征向量是线性独立的

所有的特征向量方程可以写为:

$$AV = VD$$

$V \in R^{n*n}$  V的列是A的特征向量,D为对角矩阵,对应着值为A的特征值. 如果A可以写为:$A = VDV^{-1}$则A可对角化

特征值特征向量和对称对阵

对称矩阵的性质:$A^{-1} = A^T$, A所有的特征值都是实数,A所有的特征向量都是正交的.

Some applications of eigenvlues:  PageRank, Schrodinger's equation, PCA

矩阵代数

矩阵梯度:

Hessian Matrix

参考资料:

https://docs.microsoft.com/en-us/dotnet/framework/winforms/advanced/how-to-rotate-reflect-and-skew-images

[学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 3 线性代数初步的更多相关文章

  1. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 1 课程介绍

    课程大纲:http://vision.stanford.edu/teaching/cs131_fall1718/syllabus.html 课程定位: 课程交叉: what is (computer) ...

  2. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 2 颜色和数学基础

    大纲 what is color? The result of interaction between physical light in the environment and our visual ...

  3. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 4 像素和滤波器

    Background reading: Forsyth and Ponce, Computer Vision Chapter 7 Image sampling and quantization Typ ...

  4. [学习笔记] CS131 Computer Vision: Foundations and Applications:Lecture 9 深度学习

    深度学习 So far this week Edge detection RANSAC SIFT K-Means Linear classifier Mean-shift PCA/Eigenfaces ...

  5. Computer Vision: Algorithms and ApplicationsのImage processing

    实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...

  6. ASP.Net MVC开发基础学习笔记:五、区域、模板页与WebAPI初步

    一.区域—麻雀虽小,五脏俱全的迷你MVC项目 1.1 Area的兴起 为了方便大规模网站中的管理大量文件,在ASP.NET MVC 2.0版本中引入了一个新概念—区域(Area). 在项目上右击创建新 ...

  7. Cocos2dx 3.1.1 学习笔记整理(4):事件监听与Action的初步使用

    项目忙,趁着刚才有点空,看了下触摸事件在新版本中怎么实现,遇到问题都是去:cocos2d-x-3.1.1\tests\cpp-tests\Classes下面找的,里面都是一些小例子. 首先新的CCNo ...

  8. Computer Vision: OpenCV, Feature Tracking, and Beyond--From <<Make Things See>> by Greg

    In the 1960s, the legendary Stanford artificial intelligence pioneer, John McCarthy, famously gave a ...

  9. Computer Vision Algorithm Implementations

    Participate in Reproducible Research General Image Processing OpenCV (C/C++ code, BSD lic) Image man ...

随机推荐

  1. 面试准备专题——JVM,类编译,类加载,内存错误

    jvm体系总体分四大块: 类的加载机制 jvm内存结构 GC算法 垃圾回收 GC分析 命令调优 类的加载机制 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法 ...

  2. php输出网页源代码莫名奇妙的多了一堆方框,导致ajax验证失败.

    今天在用一个ajax验证用户名的功能,返回值报错,抓包看了下,多出来一堆点,源代码里显示方框和6个空行 这堆东西导致ajax判断返回值会错误,度娘了一下午(皇天不负游戏人啊),原来是一个坑爹的BOM头 ...

  3. redis 零散知识

    1.单线程 2.默认 16 个库.0~15 3.select :切换数据库 4.DBsize :查看当前数据库的数量 5.keys * :查看当前库的所有 key 6.keys k? :问号是占位符 ...

  4. OA项目知识总结

    struts文件配置 --------------------------------------------------------- 配置c3po链接池 --------------------- ...

  5. 流媒体播放器VLC SDL

    http://www.cnblogs.com/lihuixian001/archive/2013/03/15/2957103.html https://wiki.videolan.org/Win32C ...

  6. Oracle-查看用户对象信息

    --视图(可查看拥有者.对象名称.创建时间.上次修改时间) SELECT t.OBJECT_NAME, t.CREATED, t.LAST_DDL_TIME FROM user_objects t o ...

  7. 在centOS6.5 上安装使用pipework

    需求:镜像生成了2个含有tomcat的容器,用nginx进行负载均衡.但是容器重启后ip会自动改变...所以使用pipework进行分配静态ip pipework安装 OS:centos6.5 第一步 ...

  8. HDU 4133

    注意题目中的一句话:If a number m has bigger evaluating value than all the numbers smaller than it... 这让我重新想过反 ...

  9. 安装ftp碰到的问题及解决方法

    1   CRT显示乱码:     本地windows机器.改动SecureCRT的设置.找到"选项"->"会话选项"->"外观" ...

  10. Nagios监控nginx服务具体过程

    1在nginx 服务器上安装nrpe客户端: Nginx的服务须要监控起来.不然万一down了而不及时修复,会影响web应用.例如以下web应用上面启动的nginx后台进程[root@lb-net-2 ...