我们可以发现最多只会进行5次操作。

由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可。

如果4次仍然不可行,则只有可能是5次。所以正反最多只需要搜2层

code:

#include<cstdio>
#include<tr1/unordered_map>
#include<algorithm>
#include<queue>
using namespace std;
using namespace std :: tr1;
unordered_map<long long ,int>F[3];
queue<long long>Q;
int n, A[20], w[20];
int getnext(int arr[],int cur)
{
while(cur < n && arr[cur+1] == arr[cur] + 1)++cur;
return cur;
}
long long get(int arr[])
{
long long tmp = 0;
for(int i = 1;i <= n; ++i)
{
tmp = tmp * 10 + arr[i];
}
return tmp;
}
int dfs(int cur,int target,int arr[],int ty)
{
if(cur == target)
{
long long fin = get(arr);
F[ty][fin] = -1;
Q.push(fin);
if(F[ty^1][fin] == -1) return 1;
return 0;
}
int h[12];
for(int lefts = 1;lefts <= n; ++lefts)
{
for(int rights = lefts; rights <= n; ++rights)
{
int pos = 0;
for(int fronts = 1; fronts < lefts; ++fronts)
{
pos = 0;
for(int i = 1; i < fronts; ++i) h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i) h[++pos] = arr[i];
for(int i = fronts;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1; i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1,target,h,ty)) return 1;
}
for(int backs = rights + 1; backs <= n; ++backs)
{
pos = 0;
for(int i = 1;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1;i <= backs; ++i)h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i)h[++pos] = arr[i];
for(int i = backs + 1;i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1, target,h,ty))return 1;
}
}
}
return 0;
}
int main()
{
int cas = 0;
while(1)
{
scanf("%d",&n);
if(!n)break;
for(int i = 1;i <= n;++i)
{
scanf("%d",&A[i]);
w[i] = A[i];
}
sort(w + 1, w + 1 + n);
if(getnext(A,1) == n)
{
printf("0\n");
continue;
}
while(!Q.empty())
{
F[0][Q.front()] = 0, F[1][Q.front()] = 0;
Q.pop();
}
F[1][get(w)] = -1;
if(dfs(0,1,A,0))printf("1\n");
else if(dfs(0,1,A,0) || dfs(0,1,w,1))printf("2\n");
else if(dfs(0,2,A,0) || dfs(0,1,w,1))printf("3\n");
else if(dfs(0,2,A,0) || dfs(0,2,w,1))printf("4\n");
else printf("5\n");
}
return 0;
}

Editing a Book 搜索 + meet in the middle的更多相关文章

  1. 折半搜索(meet in the middle)

    折半搜索(meet in the middle) ​ 我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃. ​ 由于子树分支是指数性增长,所以我们考虑将其折半优化; 前言 ​ 这个 ...

  2. Meet in the middle

    搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet ...

  3. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  4. 【BZOJ4800】[Ceoi2015]Ice Hockey World Championship Meet in the Middle

    [BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一 ...

  5. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  6. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  7. meet in the middle 复习笔记

    前言 若干年前看过现在又忘了.这么简单都忘 所以今天来重新复习一下. 正题 考虑这样的问题: 给定 \(n\) 个物品的价格,你有 \(m\) 块钱,每件物品限买一次,求买东西的方案数. \(n\le ...

  8. 浅谈Meet in the middle——MITM

    目测观看人数 \(0+0+0=0\) \(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇. 可以理解为就是起点跑搜索树基本一 ...

  9. SPOJ4580 ABCDEF(meet in the middle)

    题意 题目链接 Sol 发现abcdef是互不相关的 那么meet in the middle一下.先算出abc的,再算def的 注意d = 0的时候不合法(害我wa了两发..) #include&l ...

随机推荐

  1. 7.IDEA创建Web项目和Tomcat配置

    IntelliJ IDEA Tomcat配置 详解 Tomcat 7.0 和jdk1.8 一起使用 一.创建web项目 1.1  创建工程 1.2 创建java web项目并创建web.xml文件 1 ...

  2. web开发如何使用高德地图API(一)浏览器定位

    说两句: 以下内容除了我自己写的部分,其他部分在高德开放平台都有(可点击外链访问). 我所整理的内容以实际项目为基础希望更有针对性的,更精简. 点击直奔主题. 准备工作: 首先,注册开发者账号,成为高 ...

  3. jvm学习-垃圾回收器(四)

    说明 各种垃圾回收算法都有各自的优缺点.jvm也并没有只采用一种垃圾算法.并提供几种组合供我根据场景进行选择. jvm内存结构 Person p=new Person(); 1.程序里面创建一个对象会 ...

  4. mongodb drop不释放磁盘空间

    点击(此处)折叠或打开 use demodb //使用demodb,以下假设操作的collection是foo db.foo.remove({"id":"123456&q ...

  5. poj 3177&&poj 3352加边构双联通(有重边)用tarjan 模板求的

    #include<stdio.h>/* 求边双联通分量和求强连通差不多,先缩点求出叶子节点的个数 */ #include<string.h> #define N 5100 st ...

  6. hdu 1245 Saving James Bond 策画几何+最短路 最短路求步数最少的路径

    #include<stdio.h> #include<string.h> #include<math.h> #define inf 0x3fffffff #defi ...

  7. try finnlay 总结

    public class FinnallyTest { public static void main(String[] args){ System.out.print(go()); } public ...

  8. angularjs时间轴

    1.炫酷的图片是开端啊 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA ...

  9. winform设置超时时间

    ); //设置超时时间 var completedTask = await Task.WhenAny(new Task(async () => { );//执行的方法示例这里用延迟代替 }), ...

  10. IOS 动态库问答