【BZOJ2733】【HNOI2012】永无乡 - 线段树合并
题意:
Description
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示。某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛。如果从岛 a 出发经过若干座(含 0 座)桥可以到达岛 b,则称岛 a 和岛 b 是连 通的。现在有两种操作:B x y 表示在岛 x 与岛 y 之间修建一座新桥。Q x k 表示询问当前与岛 x连通的所有岛中第 k 重要的是哪座岛,即所有与岛 x 连通的岛中重要度排名第 k 小的岛是哪 座,请你输出那个岛的编号。
对于 20%的数据 n≤1000,q≤1000
对于 100%的数据 n≤100000,m≤n,q≤300000
Input
输入文件第一行是用空格隔开的两个正整数
n 和 m,分别 表示岛的个数以及一开始存在的桥数。接下来的一行是用空格隔开的 n 个数,依次描述从岛 1 到岛 n 的重要度排名。随后的 m
行每行是用空格隔开的两个正整数 ai 和 bi,表示一开始就存 在一座连接岛 ai 和岛 bi
的桥。后面剩下的部分描述操作,该部分的第一行是一个正整数 q, 表示一共有 q 个操作,接下来的 q
行依次描述每个操作,操作的格式如上所述,以大写字母 Q 或B 开始,后面跟两个不超过 n 的正整数,字母与数字以及两个数字之间用空格隔开。
Output
对于每个 Q x k 操作都要依次输出一行,其中包含一个整数,表 示所询问岛屿的编号。如果该岛屿不存在,则输出-1。
题解:
咦为什么之前线段树合并专题的时候我没写这题……
大水题套路题,权值线段树维护每个联通块,并查集维护加边,每次合并联通块时线段树合并即可。
10分钟写完即AC爽爽
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define inf 2147483647
#define eps 1e-9
using namespace std;
typedef long long ll;
typedef double db;
struct node{
int ls,rs,v;
}t[];
int n,m,q,u,v,cnt=,fa[],rts[],num[],nmd[];
char op[];
int ff(int u){
return fa[u]==u?u:fa[u]=ff(fa[u]);
}
void updata(int &u,int l,int r,int x){
if(!u)u=++cnt;
if(l==r){
t[u].v=;
return;
}
int mid=(l+r)/;
if(x<=mid)updata(t[u].ls,l,mid,x);
else updata(t[u].rs,mid+,r,x);
t[u].v=t[t[u].ls].v+t[t[u].rs].v;
}
int merge(int x,int y){
if(!x||!y)return x|y;
t[x].ls=merge(t[x].ls,t[y].ls);
t[x].rs=merge(t[x].rs,t[y].rs);
t[x].v=t[t[x].ls].v+t[t[x].rs].v;
return x;
}
int query(int u,int l,int r,int k){
if(l==r){
return l;
}
int mid=(l+r)/;
if(t[t[u].ls].v>=k)return query(t[u].ls,l,mid,k);
else return query(t[u].rs,mid+,r,k-t[t[u].ls].v);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d",&num[i]);
fa[i]=nmd[num[i]]=i;
}
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
int fu=ff(u),fv=ff(v);
if(fu!=fv){
fa[fu]=fv;
}
}
for(int i=;i<=n;i++){
int fu=ff(i);
updata(rts[fu],,n,num[i]);
}
scanf("%d",&q);
while(q--){
scanf("%s%d%d",op,&u,&v);
if(op[]=='Q'){
int fu=ff(u);
if(t[rts[fu]].v<v){
puts("-1");
}else printf("%d\n",nmd[query(rts[fu],,n,v)]);
}else{
int fu=ff(u),fv=ff(v);
if(fu!=fv){
fa[fu]=fv;
rts[fv]=merge(rts[fu],rts[fv]);
}
}
}
return ;
}
【BZOJ2733】【HNOI2012】永无乡 - 线段树合并的更多相关文章
- BZOJ2733[HNOI2012]永无乡——线段树合并+并查集+启发式合并
题目描述 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达 ...
- bzoj2733: [HNOI2012]永无乡 线段树合并
永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以从一个岛 到达另一个岛. ...
- [HNOI2012]永无乡 线段树合并
[HNOI2012]永无乡 LG传送门 线段树合并练手题,写这篇博客只是为了给我的这篇文章找个板子题. 并查集维护连通性,对于不在同一个连通块内的合并操作每次直接合并两颗线段树,复杂度\(O(n \l ...
- 【bzoj2733】[HNOI2012]永无乡 线段树合并
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- bzoj 2733 : [HNOI2012]永无乡 (线段树合并)
Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己的独一无二的重要度,按照重要度可 以将这 n 座岛排名,名次用 1 到 n 来表示.某些岛之间由巨大的桥连接,通过桥可以 ...
- 洛谷P3224 [HNOI2012]永无乡(线段树合并+并查集)
题目描述 永无乡包含 nnn 座岛,编号从 111 到 nnn ,每座岛都有自己的独一无二的重要度,按照重要度可以将这 nnn 座岛排名,名次用 111 到 nnn 来表示.某些岛之间由巨大的桥连接, ...
- 2733: [HNOI2012]永无乡 线段树合并
题目: https://www.lydsy.com/JudgeOnline/problem.php?id=2733 题解: 建n棵动态开点的权值线段树,然后边用并查集维护连通性,边合并线段树维护第k重 ...
- Bzoj 2733: [HNOI2012]永无乡(线段树+启发式合并)
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自己 ...
- bzoj 2733: [HNOI2012]永无乡 -- 线段树
2733: [HNOI2012]永无乡 Time Limit: 10 Sec Memory Limit: 128 MB Description 永无乡包含 n 座岛,编号从 1 到 n,每座岛都有自 ...
随机推荐
- redis-windows上的安装与其他命令
为什么用Redis 数据库的IO是一个性能瓶颈,需要用redis来解决,100个IO并发已经很不错了,因为数据库天生就需要写磁盘,而redis不需要实时写磁盘而又可以存入数据库 安装 以服务的方式启动 ...
- [bzoj1369][Baltic2003]Gem_树形dp_结论题
Gem bzoj-1369 Baltic-2003 题目大意:给你一棵树,让你往节点上添自然数,使得任意相邻节点的数不同且使得权值最小. 注释:n为结点个数,$1\le n\le 10^3$. 想法: ...
- [MGR——Mysql的组复制之单主模式 ]详细搭建部署过程
1,关于MySQL Group Replication 基于组的复制(Group-basedReplication)是一种被使用在容错系统中的技术.Replication-group(复制组)是由 ...
- Android Studio怎样删除module
当你想在Android Studio中删除某个module时,大家习惯性的做法都是选中要删除的module.右键去找delete.可是 在Android Studio中你选中module,右键会发现没 ...
- linux 线程切换效率与进程切换效率相差究竟有多大?
Author:DriverMonkey Mail:bookworepeng@Hotmail.com Phone:13410905075 QQ:196568501 Are Linux threads t ...
- 《编程导论(Java)·1.4.1 范式》
这个楼主,是我的学生么?2013年写的! 嗯."编程范式或许是学习不论什么一门编程语言时要理解的最重要的术语".这句话早在2005年出版<Java程序设计>(宋中山,严 ...
- ScrollViewer滚动究竟来触发载入数据的Behavior
近期项目中遇到载入数据的性能问题, 原因是.net4.0的虚拟化支持不够完毕,有好多bug在4.5才修复. 我们仅仅能利用大家通用的做法来延迟载入数据: 每次载入固定少量的数据.当拖动究竟后.继续载入 ...
- luogu3111 [USACO14DEC]牛慢跑Cow Jog_Sliver
题目大意 有N (1 <= N <= 100,000)头奶牛在一个单人的超长跑道上慢跑,每头牛的起点位置都不同.由于是单人跑道,所有他们之间不能相互超越.当一头速度快的奶牛追上另外一头奶牛 ...
- bzoj4465: [Jsoi2013]游戏中的学问
DP 一个人要么加入一个圈,要么三个人开一圈 #include<cstdio> #include<iostream> #include<cstring> #incl ...
- 2017-3-9 leetcode 283 287 289
今天操作系统课,没能安心睡懒觉23333,妹抖龙更新,可惜感觉水分不少....怀念追RE0的感觉 =================================================== ...