【题目链接】:

pid=5418">click here~~

【题目大意】:

问题描写叙述
经过多年的努力,Victor最终考到了飞行驾照。

为了庆祝这件事,他决定给自己买一架飞机然后环游世界。

他会驾驶一架飞机沿着规定的航线飞行。在地球上一共同拥有nn个国家,编号从11到nn。各个国家之间通过mm条双向航线连接,第ii条航线连接第u_iu​i​​个国家与第v_iv​i​​个国家,通过这条航线须要消耗w_iw​i​​升油。且从11号国家能够直接或间接到达22到nn中随意一个国家。

Victor一開始位于11号国家。他想知道从11号国家出发,经过各个国家至少一次并最后回到11号国家消耗的总油量的最小值是多少。
输入描写叙述
第一行包括一个整数TT,表示測试数据的组数。

每组測试数据的第一行有两个整数nn和mm,表示国家的个数和航线的条数。

接下来mm行。每行三个整数u_iu​i​​, v_iv​i​​, w_iw​i​​,描写叙述一条航线。

1\leq T\leq 201≤T≤20。

1\leq n\leq 161≤n≤16。

1\leq m\leq 1000001≤m≤100000。

1\leq w_i\leq 1001≤w​i​​≤100。

1\leq u_i, v_i \leq n1≤u​i​​,v​i​​≤n。
输出描写叙述
每组測试数据输出一行一个整数,即消耗的总油量的最小值。
输入例子
1
3 2
1 2 2
1 3 3
输出例子
10

【思路】:

我们首先须要预处理出随意两个国家之间的最短距离。由于数据范围非常小,所以直接用Floyd即可了。

之后,我们用f[S][i]表示訪问国家的情况为S,当前最后訪问的一个国家是i所须要的最小总油量,当中,S的二进制表示记录了訪问国家的情况,S在二进制表示下的第i位(无论是从左往右还是从右往左都能够)假设是1则表示第i个国家被訪问过了,否则表示第i个国家没有被訪问过。那么f[S|(1<<i)][i]=min(f[S][j]+mat[i][j])(mat[i][j]:表示城市i,j的最短路径)。当中i和j满足S&(1<<j)=1且S&(1<<i)=0。

最開始时,除了f[1][1]是0,其它情况都是无穷大,之后先枚举S,再枚举i,那么终于的答案就是min(f[(1<<n)-1][i]+f[i][1]),当中i\in∈[2,n]。总复杂度为O(n^3+n^2*2^n)O(n​3​​+n​2​​∗2​n​​)。

代码:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <fstream>
#include <cstring>
#include <climits>
#include <deque>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <list>
#include <map>
#include <set>
#include <utility>
#include <sstream>
#include <complex>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <functional>
#include <algorithm> using namespace std; #define rep(i,j,k) for(int i=(int)j;i<(int)k;++i)
#define per(i,j,k) for(int i=(int)j;i>(int)k;--i)
#define lowbit(a) a&-a
#define Max(a,b) a>b?a:b
#define Min(a,b) a>b?b:a
#define mem(a,b) memset(a,b,sizeof(a)) const double pi = acos(-1.0);
const int inf = 0x3f3f3f3f;
const int N=1e5+100;
const double eps = 1e-15;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair <int, int> pir; int mat[100][100];
int dp[(1<<16)+10][20]; int dir4[4][2]= {{1,0},{0,1},{-1,0},{0,-1}};
int dir8[8][2]= {{1,0},{1,1},{0,1},{-1,1},{-1,0},{-1,-1},{0,-1},{1,-1}};
int movv[5][2]= {{1,0},{0,1},{0,0},{-1,0},{0,-1}}; inline LL read()
{
int c=0,f=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){c=c*10+ch-'0';ch=getchar();}
return c*f;
}
int main(){
int t;t=read();
while (t--){
mem(dp,inf);mem(mat,inf);
int u, v, w, n, m;
n=read();m=read();
for(int i = 1; i <= m; ++i){
u=read();v=read();w=read();--u;--v;
mat[u][v] = Min(mat[u][v], w);
mat[v][u] = Min(mat[v][u], w);
}
for (int i = 0; i < n; ++i){
mat[i][i] = 0;
}
for (int k = 0; k < n; ++k){// floyd
for (int i = 0; i < n; ++i){
for (int j = 0; j < n; ++j){
mat[i][j] = Min(mat[i][j], mat[i][k] + mat[k][j]);
}
}
}
dp[0][0] = 0;
for (int i = 0; i < (1 << n); ++i){
for (int j = 0; j < n; ++j){
if (dp[i][j] != inf){
for (int k = 0; k < n; ++k){
dp[i | (1 << k)][k] = Min(dp[i | (1 << k)][k], dp[i][j] + mat[j][k]);
}
}
}
}
printf("%d\n", dp[(1 << n) - 1][0]);
}
return 0;
} /*
1
3 2
1 2 2
1 3 3
*/

BestCoder Round #52 (div.2) HDU 5418 Victor and World (DP+状态压缩)的更多相关文章

  1. HDU 5418——Victor and World——————【状态压缩+floyd】

    Victor and World Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/131072 K (Java/Other ...

  2. HDU 5418 Victor and World (状态压缩dp)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5418 题目大意:有n个结点m条边(有边权)组成的一张连通图(n <16, m<100000 ...

  3. HDU 1074 Doing Homework (dp+状态压缩)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:学生要完成各科作业, 给出各科老师给出交作业的期限和学生完成该科所需时间, 如果逾期一 ...

  4. TSP+Floyd BestCoder Round #52 (div.2) 1002 Victor and Machine

    题目传送门 题意:有中文版的 分析:(出题人的解题报告)我们首先需要预处理出任意两个国家之间的最短距离,因为数据范围很小,所以直接用Floyd就行了.之后,我们用f[S][i]表示访问国家的情况为S, ...

  5. 构造 BestCoder Round #52 (div.2) 1001 Victor and Machine

    题目传送门 题意:有中文版的 分析:首先要知道机器关闭后,w是清零的.所以一次(x + y)的循环弹出的小球个数是固定的,为x / w + 1,那么在边界时讨论一下就行了 收获:这种题目不难,理解清楚 ...

  6. BestCoder Round #52 (div.1)

    这周六BC和CF又差点打架,精力不够啊...结果打BC没起来,就看了一眼题跑了...今天早上补补吧,(因为今天晚上还要打UER= =) 先放官方题解: 1000 Victor and Machine ...

  7. HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)

    题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...

  8. hdu 4336 Card Collector(期望 dp 状态压缩)

    Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...

  9. HDU 1074 Doing Homework(DP状态压缩)

    题意:有n门功课需要完成,每一门功课都有时间期限以及你完成所需要的时间,如果完成的时间超出时间期限多少单位,就会被减多少学分,问以怎样的功课完成顺序,会使减掉的学分最少,有多个解时,输出功课名字典序最 ...

随机推荐

  1. git常规使用的命令

    注: xxxx代表你的分支名称   1:本地新建一个分支,与远程分支关联: git branch --set-upstream-to origin/xxxx xxxx   2:创建本地分支: git ...

  2. Window7幻灯片字体显示混乱,难道真的是病毒么

    这个问题有几天了.就是在其它人的PowerPoint2010做的ppt文件.发到这台有问题的电脑上(PowerPoint2007)就会显示全然不一样.例如以下所看到的. watermark/2/tex ...

  3. Jmeter简单应用

    JMeter 是Apache组织的开源项目,是一个纯Java桌面应用,用于压力测试和性能测量. 1.安装jmeter jdk1.6以上下载地址:http://www.oracle.com/techne ...

  4. wpf 全局异常捕获处理

    /// <summary> /// App.xaml 的交互逻辑 /// </summary> public partial class App : Application { ...

  5. HIT Software Construction Lab 5_经验总结

    前言: 终于写完lab5了,这次lab5是基于lab3的一次实验,主要是王忠杰老师提供了4个大约有50w行的大文件让我们根据自己所选应用读取其中两个并且创建轨道系统. 这次lab5优化的我很崩溃,因为 ...

  6. Python学习历程之面对对象浅识

    # ===============================封装====================================# class Bar:# def __init__(se ...

  7. NLog日志记录

    配置NLog         NLog支持 .Net 4.5 以及以上版本!              首先去下载NLog的DLL下载地址:http://nlog-project.org/downlo ...

  8. [转] Java 插入表记录后得到自增的id (附3种方法代码)

    转自:https://blog.csdn.net/yaerfeng/article/details/7231093 在MySQL中,使用auto_increment类型的id字段作为表的主键,并用它作 ...

  9. mysql 导入数据库 命令操作

    window下 1.导出整个数据库 mysqldump -u 用户名 -p 数据库名 > 导出的文件名 mysqldump -u dbuser -p dbname > dbname.sql ...

  10. C# Distanct List集合

    简单一维集合的使用 List<int> ages = new List<int> { 21, 46, 46, 55, 17, 21, 55, 55 }; List<str ...