题意:要开启一扇门,n个单词是密码,n个单词中,如果一个单词的首字母和前一个单词的尾字母相同,并且每个单词都能这么连起来且只用一次,则门可以开启,否则不能开启,现给出单词,判断门是否可以开。

有向图欧拉通路充要条件:D为有向图,D的基图连通,并且所有顶点的出度与入度都相等;或者除两个顶点外,其余顶点的出度与入度都相等,而这两个顶点中一个顶点的出度与入度之差为1,另一个顶点的出度与入度之差为-1。

有向图欧拉回路充要条件:当D的所有顶点的出、入度都相等时,D中存在有向欧拉回路。

思路:一个单词关键是首字母和尾字母,可以把首字母和尾字母看成顶点,这个单词看成这两个顶点间的边,这么建图,于是原题就变成了找这个图中是否存在欧拉通路或者欧拉回路。建完图之后只需要根据定理判断每个顶点的出度、入度以及图的连通性即可。

转自:http://blog.csdn.net/zzzz40/article/details/38659755?utm_source=tuicool&utm_medium=referral

判断有多少个连通分量可以用并查集或者DFS。。我就都写了一遍

(其实是在给某人找错,就顺便写了一遍)

这是用并查集写的,写得不太好看。。(凑活看吧)

#include <cstdio>
#include <cstring>
using namespace std;
char a[1050],vis[26],VIS[26],f[26];
int cases,n,out[26],in[26],tot=0,temp,ans,ansx,ansy,len;
int find(int x){return x==f[x]?x:f[x]=find(f[x]);}
int main(){
scanf("%d",&cases);
while(cases--){
temp=ans=ansx=ansy=0;
for(int i=0;i<26;i++)f[i]=i;
memset(vis,0,sizeof(vis));
memset(VIS,0,sizeof(VIS));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%s",a);
len=strlen(a)-1;
a[0]-='a',a[len]-='a';
out[a[0]]++,in[a[len]]++;
if(!vis[a[len]])vis[a[len]]++;
f[find(a[len])]=find(a[0]);
}
for(int i=0;i<=25;i++)
if(vis[i]&&!VIS[find(i)])
VIS[find(i)]++,ans++;
if(ans>1){puts("The door cannot be opened.");continue;}
for(int i=0;i<=25;i++){
if(in[i]-out[i]==1)ansx++;
else if(out[i]-in[i]==1)ansy++;
else if(in[i]!=out[i])temp++;
}
if(ansx==ansy&&(ansx==1||ansx==0)&&!temp)puts("Ordering is possible.");
else puts("The door cannot be opened.");
}
}

DFS:

#include <cstdio>
#include <Cstring>
#include <algorithm>
using namespace std;
char a[1005];
bool vis[26],VIS[26],flag;
int cases,tot,v[200010],next[200010],first[2010],n,in[26],out[26];
int cnt1,cnt2,cnt3;
void add(int x,int y){v[tot]=y;next[tot]=first[x];first[x]=tot++;}
void dfs(int x){
for(int i=first[x];~i;i=next[i])
if(!VIS[v[i]])VIS[v[i]]=1,dfs(v[i]);
}
int main(){
scanf("%d",&cases);
while(cases--){
flag=1;tot=cnt1=cnt2=cnt3=0;
memset(first,-1,sizeof(first));
memset(vis,0,sizeof(vis));
memset(VIS,0,sizeof(VIS));
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%s",a);
int len=strlen(a)-1;
a[0]-='a';a[len]-='a';
add(a[0],a[len]);
in[a[len]]++;out[a[0]]++;
vis[a[0]]=vis[a[len]]=1;
}
for(int i=0;i<26;i++){
if(in[i]!=out[i])cnt3++;
if(in[i]==out[i]-1)cnt1++;
if(out[i]==in[i]-1)cnt2++;
}
if(cnt3==2&&cnt1==1&&cnt2==1)
for(int i=0;i<26;i++){
if(in[i]<out[i]){
VIS[i]=1,dfs(i);
for(int i=0;i<26;i++)
if(vis[i]!=VIS[i])flag=0;
break;
}
}
else if(!cnt3){
dfs(a[0]);VIS[a[0]]=1;
for(int i=0;i<26;i++)
if(vis[i]!=VIS[i])flag=0;
}
else {puts("The door cannot be opened.");continue;}
if(flag)puts("Ordering is possible.");
else puts("The door cannot be opened.");
}
}

POJ 1386 判断欧拉回路的更多相关文章

  1. POJ 1386 Play on Words(欧拉图的判断)

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11838   Accepted: 4048 De ...

  2. poj 1386 Play on Words 有向欧拉回路

    题目链接:http://poj.org/problem?id=1386 Some of the secret doors contain a very interesting word puzzle. ...

  3. poj 1386 Play on Words门上的单词【欧拉回路&&并查集】

    题目链接:http://poj.org/problem?id=1386 题目大意:给你若干个字符串,一个单词的尾部和一个单词的头部相同那么这两个单词就可以相连,判断给出的n个单词是否能够一个接着一个全 ...

  4. POJ 1386 Play on Words(单词建图+欧拉通(回)路路判断)

    题目链接:http://poj.org/problem?id=1386 题目大意:给你若干个字符串,一个单词的尾部和一个单词的头部相同那么这两个单词就可以相连,判断给出的n个单词是否能够一个接着一个全 ...

  5. poj 1386 Play on Words(有向图欧拉回路)

    /* 题意:单词拼接,前一个单词的末尾字母和后一个单词的开头字母相同 思路:将一个单词的开头和末尾单词分别做两个点并建一条有向边!然后判断是否存在欧拉回路或者欧拉路 再次强调有向图欧拉路或欧拉回路的判 ...

  6. HDU 1116 || POJ 1386 || ZOJ 2016 Play on Words (欧拉回路+并查集)

    题目链接 题意 : 有很多门,每个门上有很多磁盘,每个盘上一个单词,必须重新排列磁盘使得每个单词的第一个字母与前一个单词的最后一个字母相同.给你一组单词问能不能排成上述形式. 思路 :把每个单词看成有 ...

  7. [欧拉回路] poj 1386 Play on Words

    题目链接: http://poj.org/problem?id=1386 Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total S ...

  8. poj 1386 Play on Words(有向图欧拉路+并查集)

    题目链接:http://poj.org/problem?id=1386 思路分析:该问题要求判断单词是否能连接成一条直线,转换为图论问题:将单词的首字母和尾字母看做一个点,每个单词描述了一条从首字母指 ...

  9. POJ 1386 Play on Words(欧拉路)

    http://poj.org/problem?id=1386 题意: 给出多个单词,只有单词首字母与上一个单子的末尾字母相同时可以连接,判断所有字母是否可以全部连接在一起. 思路: 判断是否存在欧拉道 ...

随机推荐

  1. 三维重建:SLAM相关的一些术语解释

    SLAM是一个工程问题,再次复习一下工程中可能用到的名词解释. 还是不要看了,高翔的科普读物已经出版了,读他的<slam十四讲>就可以了. 一.度量相关: 世界坐标系:描述图像的平面坐标系 ...

  2. 新浪某个tab 页模仿

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  3. nginx_安装测试

    首先安装环境: [root@local nginx-1.9.14]#  yum install gcc-c++  pcre pcre-devel  zlib zlib-devel openssl op ...

  4. vue系列---identify(生成图片验证码)插件

    identify 这是一个vue的插件,使用canvas来生成图形验证码. 具体参数如下: identify.vue组件(主要用于定义参数和方法) <template> <div c ...

  5. Js 字符串中提取数字

    一 parseInt()方法: 首先想到的是js提供的parseInt方法,例子: var str ="4500元"; var num = parseInt(str); alert ...

  6. python tips:作为dict的key的类

    Python的dict由hash实现,解决hash冲突的方法是二次探查法.hash值相同的元素会形成链表.所以dict在查找key时,首先获取hash值,直接得到链表的表头:而后在链表中查找等于key ...

  7. matlab 读取输入数组

    In an assignment A(I) = B, the number of elements in B and I must be the same MATLAB:index_assign_el ...

  8. JVM 性能调优监控工具 jps、jstack、jmap、jhat、jstat、hprof 使用详解

    转自:  https://my.oschina.net/feichexia/blog/196575 摘要: JDK本身提供了很多方便的JVM性能调优监控工具,除了集成式的VisualVM和jConso ...

  9. 如何快速从数据库获取表属性编写JavaBean

    以前自己对子设计好的数据库将数据库中的表转换为JavaBean,自己还一个一个慢慢打效率真是低,还是老师比较聪明学习学习. 我用的数据库可视化工具是Navicat Premium.UltraEdit( ...

  10. bpm被攻击事件

    bpm登录不上,服务器是windows2008,从深信服上面设置了ddos每秒钟连接超5000次封锁,阻断后面的IP连接,,深信服DDOS日志没有记录 在bpm服务器上面通过netstat -a查看发 ...