@[斜率優化]

Description

P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压

缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中. P教授有编号为\(1 .. N\)的\(N\)件玩具,第\(i\)件玩具经过压缩后变成一维长度为\(C_i\).为了方便整理, P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容

器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器的长度将为 $$x = j - i + \sum_{k = i}^{j} C_i$$ 制作容器的费用与容器的长度有关,根据教授研究,如果容器长度为\(x\), 其制作费用为\((X-L)^2\). 其中\(L\)是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容器,甚至超过\(L\). 但他希望费用最小.

Input

第一行输入两个整数N,L.接下来N行输入\(C_i\). \(1 <= N <= 50000, 1 <= L, C_i <= 10^7\)

Output

输出最小费用

Sample Input

5 4
3
4
2
1
4

Sample Output

1

Solution

典型的斜率優化DP

令\(f[i]\)記錄標號為從\(1\)到\(i\)的玩具全部壓縮好所需要的最小費用, 則可以得到DP递推式$$f[i] = min_{j = 0}^{i - 1}(f[j] + (sum[i] - sum[j] + i - j - 1 - L)^2)$$其中\(sum[i]\)記錄編號從\(1\)到\(i\)的玩具的長度總和.

假設在\(i > j > k\)中, 對於\(i\)有\(j\)比\(k\)優, 則$$f[j] + (sum[i] - sum[j] + i - j - 1 - L)^2 < f[k] + (sum[i] - sum[k] + i - k - 1 - L)^2$$

化簡得到

\[\frac{(f[j] + b[j]^2) - (f[k] + b[k]^2)}{b[j] - b[k]} < 2 * a[i]
\]

其中$$a[i] = sum[i] + 1 - L$$$$b[i] = sum[i] + i$$

*Hint: 化簡有一定技巧. 一般來說, 化簡得到的結果要把含\(i\)的項移至等號右邊, 不含\(i\)的項移至左邊, 以方便後續運算.

可以將這個除法式子理解為所謂的斜率, 記為\(slope(j, k)\)

然後用隊列來維護DP. 具體過程如下:

  1. 對於隊頭的兩個元素, 假如有\(slope(queue[head + 1], queue[head]) > 2 * a[i]\)則說明隊列中第二個元素比第一個優, 隊頭出隊.
  2. 此時可以確保隊頭元素是最優解, 用隊頭元素計算出\(f[i]\)的數值
  3. 在有了\(f[i]\)的值的情況下, 就可以在隊尾進行維護了. 對於隊尾的兩個元素記為\(x, y(x > y)\), 假如有\(slope(x, y) > slope(i, x)\)則說明\(x\)是無用的, 可以出隊. 具體證明如下: (1). 假如\(slope(x, y) > slope(i, x) > 2 * a[i]\), 則雖然有\(x\)比\(i\)優, 但又有\(y\)比\(x\)優, 因此\(x\)可出隊; (2). 假如\(slope(x, y) > slope(i, x) < 2 * a[i]\), 則有\(i\)比\(x\)優, \(x\)可出隊.
  4. 將\(i\)加入隊尾

維護過程結束. 注意每一步的順序, 都是有先後性的, 不要搞反.

然後再說道一個點, 這一題一定要開\(long long\)

感覺現階段推公式的能力還要加強, 這一坨東西我推錯了好多次QAQ

附上代碼

#include<cstdio>
#include<cctype>
#include<cstring>
using namespace std;
inline long long read()
{
long long x = 0, flag = 1;
char c;
while(! isdigit(c = getchar()))
if(c == '-')
flag *= - 1;
while(isdigit(c))
x = x * 10 + c - '0', c = getchar();
return x * flag;
}
const long long N = 1 << 16;
long long c[N];
long long sum[N];
long long a[N], b[N];
long long queue[N];
long long f[N];
inline long long sqr(long long x)
{
return x * x;
}
inline long double slope(long long x, long long y)
{
return (long double)((f[x] + sqr(b[x])) - (f[y] + sqr(b[y]))) / (long double)(b[x] - b[y]);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("BZOJ1010.in", "r", stdin);
freopen("BZOJ1010.out", "w", stdout);
#endif
long long n = read(), l = read();
sum[0] = 0;
a[0] = - 1 - l;
b[0] = 0;
for(long long i = 1; i <= n; i ++)
{
c[i] = read();
sum[i] = c[i] + sum[i - 1];
a[i] = sum[i] + i - 1 - l;
b[i] = sum[i] + i;
}
long long head = 0, tail = 1;
queue[head] = 0;
memset(f, 0, sizeof(f));
for(long long i = 1; i <= n; i ++)
{
while(head + 1 < tail && slope(queue[head + 1], queue[head]) < 2 * (float)a[i])
head ++;
f[i] = f[queue[head]] + sqr(a[i] - b[queue[head]]);
while(head + 1 < tail && slope(queue[tail - 1], queue[tail - 2]) > slope(i, queue[tail - 1]))
tail --;
queue[tail ++] = i;
}
printf("%lld\n", f[n]);
}

順便, 這裡想借這一題, 寫一點關於斜率優化的深層次理解, 主要圍繞隊列的維護方面. 首先是入隊, 為什麼要通過這種方式確定隊尾元素的保留還是彈出? 為什麼在\(slope(i, queue[tail - 1]) > 2 * a[i]\)的情況下仍然要將\(i\)入隊? 主要是出於對後效性的考慮. 對於\(2 * a[i]\)不難看出, 它是隨著\(i\)的增大而遞增的. 因此, 對於一個\(i\), 雖然在當前不一定是最優的, 但在之後可能成為最優解, 因此要入隊. 因此在隊尾出隊的原則, 應該是與當前的\(a[i]\)無關的. 至於在隊頭出隊的原則, 也是在考慮到\(2 * a[i]\)的單調性以及確保無後效性的情況下才出隊的.

另外一點就是關於判斷一道題是否可以進行斜率优化. 這主要取決於等式右邊的斜率是否滿足單調性. 雖然說從隊尾出隊的元素與斜率無關, 但是隊頭出隊的元素是需要依賴於斜率的單調性的. 因此斜率是否滿足單調性可以作為一題是否可以採用 常規 的斜率优化的判斷依據.(假如不滿足, 還可以採用特殊的方法優化DP)

BZOJ1010玩具裝箱Toy的更多相关文章

  1. [BZOJ1010]玩具装箱toy(斜率优化)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  2. BZOJ-1010 玩具装箱toy (斜率优化)

    题目大意:将n个数分成若干组,并且每组的数在原数组中应是连续的,每组会产生的代价为sum(i)-sum(j)+i-j-1-m,m为已知的常数.求最小代价. 题目分析:定义dp(i)表示将前 i 个元素 ...

  3. [NOIP2016day1T1] 玩具迷題(toy)

    题目描述 小南有一套可爱的玩具小人, 它们各有不同的职业. 有一天, 这些玩具小人把小南的眼镜藏了起来. 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外.如下图: 这时singer告诉 ...

  4. bzoj1010 玩具装箱

    玩具装箱 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具, ...

  5. Noip2016day1 玩具迷题toy

    题目描述 小南有一套可爱的玩具小人, 它们各有不同的职业. 有一天, 这些玩具小人把小南的眼镜藏了起来. 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外.如下图: 这时singer告诉 ...

  6. BZOJ1010玩具装箱 - 斜率优化dp

    传送门 题目分析: 设\(f[i]\)表示装前i个玩具的花费. 列出转移方程:\[f[i] = max\{f[j] + ((i - (j + 1)) + sum[i] - sum[j] - L))^2 ...

  7. luogu3195/bzoj1010 玩具装箱(斜率优化dp)

    推出来式子然后斜率优化水过去就完事了 #include<cstdio> #include<cstring> #include<algorithm> #include ...

  8. P3195 [HNOI2008] 玩具装箱(斜率优化DP)

    题目链接 设\(d[i]\)为将前 \(i\) 个玩具装入箱中所需得最小费用 容易得到动态转移方程: \[d[i] = min(d[j] + (s[i]-s[j]+i-j-1-L)^2), (j< ...

  9. HNOI2008题目总结

    呜呼..NOI前一个月正式开始切BZOJ了……以后的题解可能不会像之前的零散风格了,一套题我会集中起来发,遇到一些需要展开总结的东西我会另开文章详细介绍. 用了一天的时间把HNOI2008这套题切了… ...

随机推荐

  1. printk的使用技巧

    在 linux/kernel.h 中有相应的宏对应. #define KERN_EMERG    "<0>"    /* system is unusable */#d ...

  2. LightOj:1030-Discovering Gold(期望dp模板)

    传送门:http://www.lightoj.com/volume_showproblem.php?problem=1030 Discovering Gold Time Limit: 2 second ...

  3. 浅谈内核的Makefile、Kconfig和.config文件

    Linux内核源码文件繁多,搞不清Makefile.Kconfig..config间的关系,不了解内核编译体系,编译修改内核有问题无从下手,自己写的驱动不知道怎么编进内核,不知道怎么配置内核,这些问题 ...

  4. 笔记-python-*号解包

    笔记-python-*号解包 在码代码时发现*号可以这样使用: str = ["abcd", "abce", "abcf"]st = &qu ...

  5. python基础学习笔记——网络编程(协议篇)

    一 互联网的本质 咱们先不说互联网是如何通信的(发送数据,文件等),先用一个经典的例子,给大家说明什么是互联网通信. 现在追溯到八九十年代,当时电话刚刚兴起,还没有手机的概念,只是有线电话,那么此时你 ...

  6. luogu1742 最小圆覆盖

    狗题卡我精度--sol #include <algorithm> #include <iostream> #include <cstdlib> #include & ...

  7. 网络编程之IO复用:select or epoll

    对于服务器的并发处理能力,我们需要的是:每一毫秒服务器都能及时处理这一毫秒内收到的数百个不同TCP连接上的报文,与此同时,可能服务器上还有数以十万计的最近几秒没有收发任何报文的相对不活跃连接.同时处理 ...

  8. POJ3071 Football 【概率dp】

    题目 Consider a single-elimination football tournament involving 2n teams, denoted 1, 2, -, 2n. In eac ...

  9. 浅谈getStackTrace()方法(一)

    缘起: 今天看到有一个工具类中有一句: String msgToPrint = Thread.currentThread().getStackTrace()[1].getMethodName(); 输 ...

  10. jsp实现文件下载,out = pageContext.pushBody();out.close();不用写到jsp中

    测试jsp: <%@ page contentType="text/html; charset=gbk" %> <% try{ com.enfo.intrust. ...