题目链接:http://codeforces.com/problemset/problem/711/D

D. Directed Roads
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

ZS the Coder and Chris the Baboon has explored Udayland for quite some time. They realize that it consists of n towns numbered from 1 to n.

There are n directed roads in the Udayland. i-th
of them goes from town i to some other town ai (ai ≠ i).
ZS the Coder can flip the direction of any road in Udayland, i.e. if it goes from town A to town B before
the flip, it will go from town B to town A after.

ZS the Coder considers the roads in the Udayland confusing, if there is a sequence of distinct towns A1, A2, ..., Ak (k > 1)
such that for every 1 ≤ i < k there is a road from town Ai to
town Ai + 1 and
another road from town Ak to
town A1.
In other words, the roads are confusing if some of them form a directed cycle of some towns.

Now ZS the Coder wonders how many sets of roads (there are 2n variants)
in initial configuration can he choose to flip such that after flipping each road in the set exactly once, the resulting network will not be confusing.

Note that it is allowed that after the flipping there are more than one directed road from some town and possibly some towns with no roads leading out of it, or multiple roads between any pair of cities.

Input

The first line of the input contains single integer n (2 ≤ n ≤ 2·105) —
the number of towns in Udayland.

The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n, ai ≠ i), ai denotes
a road going from town i to town ai.

Output

Print a single integer — the number of ways to flip some set of the roads so that the resulting whole set of all roads is not confusing. Since this number may be too large, print the answer modulo 109 + 7.

Examples
input
3
2 3 1
output
6
input
4
2 1 1 1
output
8
input
5
2 4 2 5 3
output
28
Note

Consider the first sample case. There are 3 towns and 3 roads. The towns are numbered from 1 to 3 and the roads are  initially. Number the roads 1 to 3 in this order.

The sets of roads that ZS the Coder can flip (to make them not confusing) are {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}. Note that the empty set is invalid because if no roads are flipped, then towns 1, 2, 3 is form a directed cycle, so it is confusing. Similarly, flipping all roads is confusing too. Thus, there are a total of 6 possible sets ZS the Coder can flip.

The sample image shows all possible ways of orienting the roads from the first sample such that the network is not confusing.

题解:

1.根据题意, n个点共有n条边。那么表明每个连通块中, 有且仅有一个环, 且这个环可能还有一些“线丝”挂在上面。

2.首先对于一个连通块而言, 可分为环部分和线丝部分:对于环部分,如果有k个点, 那么有(1<<k)-2种情况可以去环。(-2是减去所有都flip或者所有都不flip这两种情况,因为这两种情况都不能 去环), 对于线丝部分, 他们的状态对环没有影响,假设线丝有t个点,那么状态数为1<<t。

最后将每个连通块的环部分和线丝部分的状态数相乘, 即为答案。

找环问题:

1.group[]数组记录当前点时是在哪一次的dfs中访问到的。vis[]记录当前点在这次dfs中是第几个被访问的元素。

2.在dfs的过程中, 当遇到被访问过的元素时: 如果它的group[i]为这次dfs所标记的, 那么表明这次dfs构成了环; 如果group[i]为之前dfs所标记的, 那么表明这次dfs出来的是线丝(遇到的连通块必定有环。因为:假设无环,那么就可以dfs出环了,说明假设不成立)。

代码如下:

 #include<bits/stdc++.h>
#define ms(a, b) memset((a), (b), sizeof(a))
using namespace std;
typedef long long LL;
const double eps = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int maxn = 2e5+; int n, a[maxn];
int vis[maxn], group[maxn];
LL ans; LL qpow(LL x, LL y)
{
LL s = ;
while(y)
{
if(y&) s = (s*x)%mod;
x = (x*x)%mod;
y >>= ;
}
return s;
} void dfs(int k, int id, int cnt) //dfs出环, 或者dfs出线丝
{
vis[k] = cnt;
group[k] = id; if(vis[a[k]]) //遇到了被访问过的元素
{
if(group[a[k]]==id) //dfs出环
{
ans *= qpow(,cnt-vis[a[k]]+)-, ans %= mod; //环的部分
ans *= qpow(, vis[a[k]]-), ans %= mod; // 环之外的那条线
}
else ans *= qpow(,cnt), ans %= mod; //dfs出线丝
}
else dfs(a[k], id, cnt+);
} int main()
{
scanf("%d",&n);
for(int i = ; i<=n; i++)
scanf("%d",&a[i]); ans = ;
ms(vis,);
ms(group,);
for(int i = ; i<=n; i++)
if(!vis[i])
dfs(i,i,); printf("%lld\n", ans);
}

Codeforces Round #369 (Div. 2) D. Directed Roads —— DFS找环 + 快速幂的更多相关文章

  1. Codeforces Round #369 (Div. 2) D. Directed Roads dfs求某个联通块的在环上的点的数量

    D. Directed Roads   ZS the Coder and Chris the Baboon has explored Udayland for quite some time. The ...

  2. Codeforces Round #369 (Div. 2) D. Directed Roads (DFS)

    D. Directed Roads time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  3. Codeforces Round #369 (Div. 2) D. Directed Roads 数学

    D. Directed Roads 题目连接: http://www.codeforces.com/contest/711/problem/D Description ZS the Coder and ...

  4. Codeforces Round #369 (Div. 2)-D Directed Roads

    题目大意:给你n个点n条边的有向图,你可以任意地反转一条边的方向,也可以一条都不反转,问你有多少种反转的方法 使图中没有环. 思路:我们先把有向边全部变成无向边,每个连通图中肯定有且只有一个环,如果这 ...

  5. Codeforces Round #307 (Div. 2) D. GukiZ and Binary Operations 矩阵快速幂优化dp

    D. GukiZ and Binary Operations time limit per test 1 second memory limit per test 256 megabytes inpu ...

  6. Codeforces Round #209 (Div. 2)A贪心 B思路 C思路+快速幂

    A. Table time limit per test 1 second memory limit per test 256 megabytes input standard input outpu ...

  7. CodeForces 711D Directed Roads (DFS找环+组合数)

    <题目链接> 题目大意: 给定一个$n$条边,$n$个点的图,每个点只有一条出边(初始状态),现在能够任意对图上的边进行翻转,问你能够使得该有向图不出先环的方案数有多少种. 解题分析: 很 ...

  8. Codeforces Round #302 (Div. 2) D - Destroying Roads 图论,最短路

    D - Destroying Roads Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/544 ...

  9. Codeforces Round #369 (Div. 2)---C - Coloring Trees (很妙的DP题)

    题目链接 http://codeforces.com/contest/711/problem/C Description ZS the Coder and Chris the Baboon has a ...

随机推荐

  1. LightOj 1215 Finding LCM

    Discription LCM is an abbreviation used for Least Common Multiple in Mathematics. We say LCM (a, b, ...

  2. Java中没有C#的out关键字,但可以通过数组实现类似的效果

    其实传递的就是数组的指针,里面的每一项的值还是那块内存,所以能直接操作里面的值.如果单纯传指定的值,那么里面操作的就是新的一块内存块. 用数组实现的效果如下: class B{ String cnt= ...

  3. Android 存储(本地存储 SD卡存储 SharedPreference SQLite ContentProvider)

    本文出自:http://blog.csdn.net/dt235201314/article/details/73176149 源码下载欢迎Star(updating):https://github.c ...

  4. UVA571 - Jugs(数论)

    UVA571 - Jugs(数论) 题目链接 题目大意:给你A和B的水杯.给你三种操作:fill X:把X杯里面加满水.empty X:把X杯中的水清空.pour X Y 把X的水倒入Y中直到一方满或 ...

  5. UIView 的 autoresizingMask 属性 详解。

    转载自:liubo0_0的专栏  链接网址:http://blog.csdn.net/liubo0_0/article/details/7085935 在 UIView 中有一个autoresizin ...

  6. kettle中使用javascript步骤和fireToDB函数实现自己定义数据库查询

    kettle中使用javascript步骤和fireToDB函数实现自己定义数据库查询 如果你须要实现非传统的数据库查询操作.为了讨论这样的情景,我们如果你须要读取数据库中的正則表達式,然后检查输入的 ...

  7. Android中Environment与StatFs获取系统/SDCard存储空间大小

    近期想起Android开发的知识.好久没有使用了,都忘得几乎相同了,今天查看了一会资料往回捡捡,顺便写下来帮助一下须要的同学. 首先讲述一下Environment与StatFs这两个类,然后介绍它们的 ...

  8. qt-mingw530-opencv-开发配置

    1.安装好Qt和Qtcreator 2.解压OpenCV源码到一个目录下.路径不能带空格和中文. 3.把E:\Qt\qtcreator-2.1.0\mingw\bin添加到系统环境变量中. 4.安装C ...

  9. 深度解析开发项目之 03 - enum的使用

    深度解析开发项目之 03 - enum的使用 01 - 在#import和@interface之间定义typedef enum 注意: 默认是0,1,2,3 02 - 定义可以操作的数据类型的属性 0 ...

  10. vmware workstation14永久激活密钥

    vmware workstation14永久激活密钥分享: CG54H-D8D0H-H8DHY-C6X7X-N2KG6 ZC3WK-AFXEK-488JP-A7MQX-XL8YF AC5XK-0ZD4 ...