题目链接:hdu 5381 The sum of gcd

将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理。用线段树维护。每一个节点表示从[l,i]中以l为起始的区间gcd总和。所以每次改动时须要处理[1,i-1]与i的gcd值。可是由于gcd值是递减的,成log级,对于每一个gcd值记录其区间就可以。然后用线段树段改动,可是是改动一个等差数列。

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm> using namespace std;
typedef long long ll;
const int maxn = 1e4 + 5;
#define lson(x) (x<<1)
#define rson(x) ((x<<1)|1) namespace SegTree {
int lc[maxn << 2], rc[maxn << 2];
ll A[maxn << 2], D[maxn << 2], S[maxn << 2]; void maintain (int u, ll a, ll d) {
A[u] += a;
D[u] += d;
int n = rc[u] - lc[u] + 1;
S[u] += a * n + d * (n-1) * n / 2;
} void pushup(int u) {
S[u] = S[lson(u)] + S[rson(u)];
} void pushdown (int u) {
if (A[u] || D[u]) {
int mid = ((lc[u] + rc[u]) >> 1) + 1;
maintain(lson(u), A[u], D[u]);
maintain(rson(u), A[u] + (mid - lc[u]) * D[u], D[u]);
A[u] = D[u] = 0;
}
} void build (int u, int l, int r) {
lc[u] = l;
rc[u] = r;
A[u] = D[u] = S[u] = 0; if (l == r) {
return;
} int mid = (l + r) >> 1;
build (lson(u), l, mid);
build (rson(u), mid + 1, r);
pushup(u);
} void modify (int u, int l, int r, ll a, ll d) {
if (l <= lc[u] && rc[u] <= r) {
maintain(u, a + (lc[u] - l) * d, d);
return;
} pushdown(u);
int mid = (lc[u] + rc[u]) >> 1;
if (l <= mid)
modify(lson(u), l, r, a, d);
if (r > mid)
modify(rson(u), l, r, a, d);
pushup(u);
} ll query (int u, int l, int r) {
if (l <= lc[u] && rc[u] <= r)
return S[u]; pushdown(u);
ll ret = 0;
int mid = (lc[u] + rc[u]) >> 1;
if (l <= mid)
ret += query(lson(u), l, r);
if (r > mid)
ret += query(rson(u), l, r);
return ret;
}
}; int gcd (int a, int b) {
return b == 0 ? a : gcd(b, a%b);
} struct State {
int l, r, idx;
State (int l = 0, int r = 0, int idx = 0): l(l), r(r), idx(idx) {}
bool operator < (const State& u) const { return r < u.r; }
}S[maxn], G[maxn];
int N, Q, A[maxn];
ll R[maxn]; void init () {
scanf("%d", &N);
for (int i = 1; i <= N; i++)
scanf("%d", &A[i]);
scanf("%d", &Q);
for (int i = 1; i <= Q; i++) {
scanf("%d%d", &S[i].l, &S[i].r);
S[i].idx = i;
}
sort(S + 1, S + 1 + Q); SegTree::build(1, 1, N);
} void solve () {
int n = 0, p = 1;
for (int i = 1; i <= N; i++) {
for (int j = 0; j < n; j++)
G[j].idx = gcd(G[j].idx, A[i]);
G[n++] = State(i, i, A[i]);
int mv = 0;
for (int j = 1; j < n; j++) {
if (G[mv].idx == G[j].idx)
G[mv] = State(G[mv].l, G[j].r, G[j].idx);
else
G[++mv] = G[j];
}
n = mv + 1;
//printf("%d:%d\n", i, n);
for (int i = 0; i < n; i++) {
// printf("%d %d %d\n", G[i].l, G[i].r, G[i].idx);
int k = G[i].r - G[i].l + 1;
SegTree::modify(1, G[i].l, G[i].r, 1LL * G[i].idx * k, -G[i].idx);
if (G[i].l > 1)
SegTree::modify(1, 1, G[i].l - 1, 1LL * G[i].idx * k, 0);
} while (p <= N && S[p].r == i) {
R[S[p].idx] = SegTree::query(1, S[p].l, S[p].l);
p++;
}
}
} int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
init ();
solve ();
for (int i = 1; i <= Q; i++)
printf("%lld\n", R[i]);
}
return 0;
}

hdu 5381 The sum of gcd(线段树+gcd)的更多相关文章

  1. HDU 1394 Minimum Inversion Number(线段树求最小逆序数对)

    HDU 1394 Minimum Inversion Number(线段树求最小逆序数对) ACM 题目地址:HDU 1394 Minimum Inversion Number 题意:  给一个序列由 ...

  2. codeforces 1217E E. Sum Queries? (线段树

    codeforces 1217E E. Sum Queries? (线段树 传送门:https://codeforces.com/contest/1217/problem/E 题意: n个数,m次询问 ...

  3. hdu 5274 Dylans loves tree(LCA + 线段树)

    Dylans loves tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  4. HDU 3074.Multiply game-区间乘法-线段树(单点更新、区间查询),上推标记取模

    Multiply game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  5. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

  6. 2015 Multi-University Training Contest 8 hdu 5381 The sum of gcd

    The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  7. hdu 5381 The sum of gcd

    知道对于一个数列,如果以x为左(右)端点,往右走,则最多会有log(a[x])个不同的gcd,并且有递减性 所以会分成log段,每一段的gcd相同 那我们可以预处理出对于每一个位置,以这个位置为左端点 ...

  8. HDU 5381 The sum of gcd (技巧,莫队算法)

    题意:有一个含n个元素的序列,接下来有q个询问区间,对每个询问区间输出其 f(L,R) 值. 思路: 天真单纯地以为是道超级水题,不管多少个询问,计算量顶多就是O(n2) ,就是暴力穷举每个区间,再直 ...

  9. HDU 5875 Function (2016年大连网络赛 H 线段树+gcd)

    很简单的一个题的,结果后台数据有误,自己又太傻卡了3个小时... 题意:给你一串数a再给你一些区间(lef,rig),求出a[lef]%a[lef+1]...%a[rig] 题解:我们可以发现数字a对 ...

随机推荐

  1. Leetcode 583.两个字符串的删除操作

    两个字符串的删除操作 给定两个单词 word1 和 word2,找到使得 word1 和 word2 相同所需的最小步数,每步可以删除任意一个字符串中的一个字符. 示例 1: 输入: "se ...

  2. C# 反射修改私有静态成员变量

    //动态链接库中PvsApiIfCtrl.Cls.Cls_Public类有一变量 private static string key="abcd";//下面通过反射的技术修改和获取 ...

  3. zookeeper 集群

    集群步骤: 1.安装zookeeper 2.修改zookeeper配置文件 3.创建myid文件 安装zookeeper:查看安装步骤 修改zookeeper配置文件:在zoo.cfg中添加配置 se ...

  4. 在Myeclipse8.5中安装findbugs方法

    step 1:首先从官网下载findbugs插件:http://downloads.sourceforge.net/project/findbugs/findbugs%20eclipse%20plug ...

  5. 四则运算UI组结对作业报告

    Github提交地址: 小组成员:陈兆庭,陈昶金: 一.编程阶段 清明节开始接触和调研关于UI设计的方法.由于两人的各方面知识储备均不足,在各种东西C#.MFC.Qt中进行调查和讨论,最终因为网上说Q ...

  6. 挑战程序竞赛例题 4.1 Random Walk(高斯消元求期望值)

    给你一幅N*M的地图,地图中有不能到达的障碍物'#'与可以走的点'.',从(1,1)开始走到(N,M),其中每一次走动均等概率地向周围的可达的格子走去,求到达(N,M)的期望步数.(N,M<=1 ...

  7. POJ 2976 Dropping tests(01分数规划入门)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11367   Accepted: 3962 D ...

  8. Codeforces Round #402 (Div. 2) D. String Game(二分答案水题)

    D. String Game time limit per test 2 seconds memory limit per test 512 megabytes input standard inpu ...

  9. [国家集训队][bzoj2120] 数颜色 [带修改莫队]

    题面: 传送门 思路: 这道题和SDOI2009的HH的项链很像,只是多了一个修改 模板套上去呀 莫队学习请戳这里:莫队 Code: #include<iostream> #include ...

  10. modeJS 深了解(1): Node.js + Express 构建网站预备知识

    转载:http://www.cnblogs.com/zhongweiv/p/nodejs_express_webapp1.html 目录 前言 新建express项目并自定义路由规则 如何提取页面中的 ...