[USACO Section 2.3] Cow Pedigrees (动态规划)
题目链接
Solution
我DP太菜啦...
考虑到一棵二叉树是由根节点以及左儿子和右儿子构成。
所以答案其实就是 左儿子方案数*右儿子方案数 。
状态定义:
\(f[i][j]\) 代表深度为 \(i\) ,节点个数为 \(j\) 的二叉树方案数。
转移方程:
对于每一个状态,节点总数已经确定。
那么枚举一维左子树的节点个数,右边用总数减去。
如果要构建一棵深度为 \(i\) 的二叉树,则两棵子树中必有一棵深度为 \(i-1\) 。
此时有三种情况:
- 左子树深度小于 \(i-1\),右子树深度为 \(i-1\)。
- 右子树深度小于 \(i-1\),左子树深度为 \(i-1\)。
- 两边子树深度均为 \(i-1\)。
由于我们需要的是深度小于 \(i-1\) 的所有情况,所以记录一个前缀和 \(sum\) 。
每一次要加上的便是 \(sum_{i-2}\) 。
然后参照以上做即可。
Code
#include<bits/stdc++.h>
using namespace std;
const int mod=9901;
int f[110][210],n,k,sum[110][210];
int main()
{
scanf("%d%d", &n, &k);
f[1][1]=1;
for (int i=2;i<=k;i++)
for (int j=1;j<=n;j++)
{
for (int p=1;p<j;p++)
{
f[i][j]=(f[i][j]+sum[i-2][p]*f[i-1][j-p-1])%mod;
f[i][j]=(f[i][j]+sum[i-2][j-p-1]*f[i-1][p])%mod;
f[i][j]=(f[i][j]+f[i-1][p]*f[i-1][j-p-1])%mod;
}
sum[i-1][j]=(sum[i-2][j]+f[i-1][j])%mod;
}
printf("%d\n", f[k][n]);
return 0;
}
[USACO Section 2.3] Cow Pedigrees (动态规划)的更多相关文章
- 【USACO 2.3】Cow Pedigrees(DP)
问n个结点深度为k且只有度为2或0的二叉树有多少种. dp[i][j]=dp[lk][ln]*dp[rk][j-1-ln],max(lk,rk)=i-1. http://train.usaco.org ...
- USACO 2.3 Cow Pedigrees
Cow Pedigrees Silviu Ganceanu -- 2003 Farmer John is considering purchasing a new herd of cows. In t ...
- 洛谷P1472 奶牛家谱 Cow Pedigrees
P1472 奶牛家谱 Cow Pedigrees 102通过 193提交 题目提供者该用户不存在 标签USACO 难度普及+/提高 提交 讨论 题解 最新讨论 暂时没有讨论 题目描述 农民约翰准备 ...
- USACO 奶牛抗议 Generic Cow Protests
USACO 奶牛抗议 Generic Cow Protests Description 约翰家的N头奶牛聚集在一起,排成一列,正在进行一项抗议活动.第i头奶牛的理智度 为Ai,Ai可能是负数.约翰希望 ...
- USACO Section 2.3 奶牛家谱 Cow Pedigrees
OJ:http://www.luogu.org/problem/show?pid=1472 #include<iostream> using namespace std; const in ...
- USACO Cow Pedigrees 【Dp】
一道经典Dp. 定义dp[i][j] 表示由i个节点,j 层高度的累计方法数 状态转移方程为: 用i个点组成深度最多为j的二叉树的方法树等于组成左子树的方法数 乘于组成右子树的方法数再累计. & ...
- USACO Section2.3 Cow Pedigrees 解题报告 【icedream61】
nocows解题报告------------------------------------------------------------------------------------------ ...
- [USACO Section 5.3]量取牛奶 Milk Measuring (动态规划,背包$dp$)
题目链接 Solution 完全背包 \(dp\) , 同时再加一个数组 \(v[i][j]\) 记录当总和为\(j\) 时第 \(i\) 种物品是否被选. 为保证从小到大和字典序,先将瓶子按大小排序 ...
- [USACO Section 3.2] 01串 Stringsobits (动态规划)
题目链接 Solution 贼有意思的 DP, 也可以用组合数学做. \(f[i][j]\) 代表前 \(i\) 位,有 \(j\) 个 \(1\) 的方案数. 转移方程很简单 : \(f[i][j] ...
随机推荐
- PWD简介与妙用(一个免费、随时可用的Docker实验室)
转载自 https://baiyue.one/archives/472.html 本文介绍下 PWD 的历史,并依据本站最近学习心得,经过多次尝试,终于打通了 Docker 与常规宝塔面板搭建,因此, ...
- vue 中根据地址名称获取实际经纬度方法
<div id="container" class="map" style="margin-top:30px; width: 1200px;he ...
- 使用EventLog组件保存Windows系统日志
实现效果: 知识运用: EventLog类的CreateEventSource方法 //用于建立一个应用程序 使用指定的Sourc作为向本机上的日志中写入日志项的有效事件源 CreateEventS ...
- Verilog设计分频器(面试必看)
分频器是指使输出信号频率为输入信号频率整数分之一的电子电路.在许多电子设备中如电子钟.频率合成器等,需要各种不同频率的信号协同工作,常用的方法是以稳定度高的晶体振荡器为主振源,通过变换得到所需要的各种 ...
- C#语言命名的9种规范
下面介绍C#语言命名的9种规范: a) 类 [规则1-1]使用Pascal规则命名类名,即首字母要大写. [规则1-2]使用能够反映类功能的名词或名词短语命名类. [规则1-3]不要使用“I”.“C” ...
- 使用三层交换配置DHCP为不同VLAN分配IP地址
三层交换的原理以及DHCP的原理,作者在这里就不详细的解释了,在这里通过一个案例来了解使用三层交换做DHCP服务器,并为不同网段分配IP地址.在生产环境中,使用路由器或交换机做DHCP服务器要常见一些 ...
- Python 建模步骤
#%% #载入数据 .查看相关信息 import pandas as pd import numpy as np from sklearn.preprocessing import LabelEnco ...
- redis的字符串操作以及在django中的使用
redis ----redis.MongoDB : 非关系型数据库 redis 存储在内存中 MongoDB 存储在硬盘中 l 简介 redis是一个key-value存储系统 , 支持持久化 ...
- Python语言程序设计之一--for循环中累加变量是否要清零
最近学到了Pyhton中循环这一章.之前也断断续续学过,但都只是到了函数这一章就停下来了,写过的代码虽然保存了下来,但是当时的思路和总结都没有记录下来,很可惜.这次我开通了博客,就是要把这些珍贵的学习 ...
- 数字pid笔记(1)
针对stm32中可以如下实现: p->IncrementVal = (p->Kp * (p->err - p->err_next)) + (p->Ki * p->e ...