在机器学习,模式识别中,我们做分类的时候,会用到一些指标来评判算法的优劣,最常用的就是识别率,简单来说,就是

Acc=Npre/Ntotal

这里的 Npre表示预测对的样本数,Ntotal表示测试集总的样本数。

识别率有的时候过于简单, 不能全面反应算法的性能,除了识别率,还有一些常用的指标,就是我们要介绍的

F1-score, recall, precision.

在介绍这些概念之前,我们先来看一个二分类的问题,给定一组训练集:

D={(xi,yi)|xi∈Rn,yi∈{0,1}}Ni=1

这里假定 yi=1 对应正样本,yi=0 对应负样本。假设我们建立了一个分类模型 H, 对每一个输入的样本 xi 会输出一个预测值 H(xi), 那么将预测值 H(xi) 与样本对应的实际值yi做比较,会得到以下四种情况:

H(xi)=1,yi=1
H(xi)=1,yi=0
H(xi)=0,yi=1
H(xi)=0,yi=0

第一种情况,预测为正,实际也为正,我们称为 true positive (TP),第二种情况,预测为正,实际为负,我们称为 false positive (FP),第三种情况,预测为负,实际为正,称为false negative (FN),最后一种情况,预测为负,实际也为负,称为 true negative (TN),每一个样本只可能属于这四种情况中的某一种,不会有其它的可能。

很显然,给定一个测试集,我们可以得到如下的关系:

Npre=TP+TN
Ntotal=TP+TN+FP+FN

如果我们定义一个测试集中,正样本个数为P, 负样本个数为N, 那么我们可以知道:P=TP+FN, N=TN+FP

所以,我们常用的识别率 acc 其实就等于

Acc=TP+TNTP+TN+FP+FN=TP+TNP+N



进一步,我们可以定义 recall ,precision, F1-score 如下所示:

Recall=TPTP+FN=TPP
Precision=TPTP+FP
F1=2TP2TP+FN+FP=2⋅Precision⋅RecallPrecision+Recall

可以看到,recall 体现了分类模型H对正样本的识别能力,recall 越高,说明模型对正样本的识别能力越强,precision 体现了模型对负样本的区分能力,precision越高,说明模型对负样本的区分能力越强。F1-score 是两者的综合。F1-score 越高,说明分类模型越稳健。

比如我们常见的雷达预警系统,我们需要对雷达信号进行分析,判断这个信号是飞行器(正样本)还是噪声 (负样本), 很显然,我们希望系统既能准确的捕捉到飞行器信号,也可以有效地区分噪声信号。所以就要同时权衡recall 和 precision这两个指标,如果我们把所有信号都判断为飞行器,那 recall 可以达到1,但是precision将会变得很低(假设两种信号的样本数接近),可能就在 0.5 左右,那F1-score 也不会很高。

有的时候,我们对recall 与 precision 赋予不同的权重,表示对分类模型的偏好:

Fβ=(1+β2)TP(1+β2)TP+β2FN+FP=(1+β2)⋅Precision⋅Recallβ2⋅Precision+Recall

可以看到,当 β=1,那么Fβ就退回到F1了,β 其实反映了模型分类能力的偏好,β>1 的时候,precision的权重更大,为了提高Fβ,我们希望precision 越小,而recall 应该越大,说明模型更偏好于提升recall,意味着模型更看重对正样本的识别能力; 而 β<1 的时候,recall 的权重更大,因此,我们希望recall越小,而precision越大,模型更偏好于提升precision,意味着模型更看重对负样本的区分能力。

参考来源:

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

https://en.wikipedia.org/wiki/F1_score

机器学习 F1-Score, recall, precision的更多相关文章

  1. 【tf.keras】实现 F1 score、precision、recall 等 metric

    tf.keras.metric 里面竟然没有实现 F1 score.recall.precision 等指标,一开始觉得真不可思议.但这是有原因的,这些指标在 batch-wise 上计算都没有意义, ...

  2. 机器学习评价方法 - Recall & Precision

    刚开始看这方面论文的时候对于各种评价方法特别困惑,还总是记混,不完全统计下,备忘. 关于召回率和精确率,假设二分类问题,正样本为x,负样本为o: 准确率存在的问题是当正负样本数量不均衡的时候: 精心设 ...

  3. How to compute f1 score for each epoch in Keras

    https://medium.com/@thongonary/how-to-compute-f1-score-for-each-epoch-in-keras-a1acd17715a2 https:// ...

  4. 机器学习中的 precision、recall、accuracy、F1 Score

    1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...

  5. 机器学习--如何理解Accuracy, Precision, Recall, F1 score

    当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释 ...

  6. 机器学习:评价分类结果(F1 Score)

    一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. ...

  7. hihocoder 1522 : F1 Score

    题目链接   时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi和他的小伙伴们一起写了很多代码.时间一久有些代码究竟是不是自己写的,小Hi也分辨不出来了. 于是他实现 ...

  8. F1 score,micro F1score,macro F1score 的定义

    F1 score,micro F1score,macro F1score 的定义 2018年09月28日 19:30:08 wanglei_1996 阅读数 976   本篇博客可能会继续更新 最近在 ...

  9. 【笔记】F1 score

    F1 score 关于精准率和召回率 精准率和召回率可以很好的评价对于数据极度偏斜的二分类问题的算法,有个问题,毕竟是两个指标,有的时候这两个指标也会产生差异,对于不同的算法,精准率可能高一些,召回率 ...

随机推荐

  1. mysql 时间函数date_format

    http://toptree.iteye.com/blog/812642今天,在开发邮件系统的时候发现有很多的邮件没有发送成功,想手动把数据修改.找了mysql 的日期函数 获得的pubtime为St ...

  2. cmake学习之-configure_file

    一.系统版本 cmake version: 3.5.2 系统版本: Ubuntun 16.04 cmake docment: 3.14.4 最后更新: 2019-05-30 二.指令说明 config ...

  3. java中的双重锁定检查(Double Check Lock)

    原文:http://www.infoq.com/cn/articles/double-checked-locking-with-delay-initialization#theCommentsSect ...

  4. 目标检测之行人检测(Pedestrian Detection)基于hog(梯度方向直方图)--- 梯度直方图特征行人检测、人流检测2

    本文主要介绍下opencv中怎样使用hog算法,因为在opencv中已经集成了hog这个类.其实使用起来是很简单的,从后面的代码就可以看出来.本文参考的资料为opencv自带的sample. 关于op ...

  5. php总结5——常量、文件上传

    5.1常量 系统常量: PHP_OS  操作系统 PHP_VERSION    php版本 PHP_SAPI    运行方式 自定义常量: define("常量名称"," ...

  6. BZOJ3878: [Ahoi2014&Jsoi2014]奇怪的计算器

    BZOJ3878: [Ahoi2014&Jsoi2014]奇怪的计算器 Description [故事背景] JYY有个奇怪的计算器,有一天这个计算器坏了,JYY希望你能帮助他写 一个程序来模 ...

  7. 辛星跟您玩转vim第四节之操作文本内容

    首先值得一提的是.我的vim教程pdf版本号已经写完了.大家能够去下载,这里是csdn的下载地址:csdn下载,假设左边的下载地址挂掉了,也能够自行在浏览器以下输入例如以下地址进行下载:http:// ...

  8. 流畅的python学习笔记:第十一章:抽象基类

    __getitem__实现可迭代对象.要将一个对象变成一个可迭代的对象,通常都要实现__iter__.但是如果没有__iter__的话,实现了__getitem__也可以实现迭代.我们还是用第一章扑克 ...

  9. Android进程的生命周期

    Android系统想要永久的保留一个应用进程差点儿是不可能的.所以系统就须要不断的释放老的或者不太重要的进程以便腾出足够的内存空间来执行新的或者更重要的进程,那么系统怎样决定哪个进程应该保留哪个应该杀 ...

  10. Java for LeetCode 093 Restore IP Addresses

    Given a string containing only digits, restore it by returning all possible valid IP address combina ...