It's that time of the year, Felicity is around the corner and you can see people celebrating all around the Himalayan region. The Himalayan region has n gyms. The i-th gym has gi Pokemon in it. There are m distinct Pokemon types in the Himalayan region numbered from 1 to m. There is a special evolution camp set up in the fest which claims to evolve any Pokemon. The type of a Pokemon could change after evolving, subject to the constraint that if two Pokemon have the same type before evolving, they will have the same type after evolving. Also, if two Pokemon have different types before evolving, they will have different types after evolving. It is also possible that a Pokemon has the same type before and after evolving.

Formally, an evolution plan is a permutation f of {1, 2, ..., m}, such that f(x) = y means that a Pokemon of type x evolves into a Pokemon of type y.

The gym leaders are intrigued by the special evolution camp and all of them plan to evolve their Pokemons. The protocol of the mountain states that in each gym, for every type of Pokemon, the number of Pokemon of that type before evolving any Pokemon should be equal the number of Pokemon of that type after evolving all the Pokemons according to the evolution plan. They now want to find out how many distinct evolution plans exist which satisfy the protocol.

Two evolution plans f1 and f2 are distinct, if they have at least one Pokemon type evolving into a different Pokemon type in the two plans, i. e. there exists an i such that f1(i) ≠ f2(i).

Your task is to find how many distinct evolution plans are possible such that if all Pokemon in all the gyms are evolved, the number of Pokemon of each type in each of the gyms remains the same. As the answer can be large, output it modulo 109 + 7.

Input

The first line contains two integers n and m (1 ≤ n ≤ 105, 1 ≤ m ≤ 106) — the number of gyms and the number of Pokemon types.

The next n lines contain the description of Pokemons in the gyms. The i-th of these lines begins with the integer gi (1 ≤ gi ≤ 105) — the number of Pokemon in the i-th gym. After that gi integers follow, denoting types of the Pokemons in the i-th gym. Each of these integers is between 1 and m.

The total number of Pokemons (the sum of all gi) does not exceed 5·105.

Output

Output the number of valid evolution plans modulo 109 + 7.

Examples
input
2 3
2 1 2
2 2 3
output
1
input
1 3
3 1 2 3
output
6
input
2 4
2 1 2
3 2 3 4
output
2
input
2 2
3 2 2 1
2 1 2
output
1
input
3 7
2 1 2
2 3 4
3 5 6 7
output
24
Note

In the first case, the only possible evolution plan is:

In the second case, any permutation of (1,  2,  3) is valid.

In the third case, there are two possible plans:

In the fourth case, the only possible evolution plan is:

题意:有n个道馆,每个道馆的宠物可以进化,但必须每个道馆保证进化前后的种类数目一样,问有多少种进化方式(进化为f(x)=y 比如f(1)=2,1变成2 )

解法:

1 其实根据样列,我们发现 重复的宠物可以通过内部全排列

1 2  3

2  3 ,2 3是重复的,我们有2!

2 对于不重复的,也可以通过全排列

1  2  3

 2   3  4  5 (4,5)

          6  7 , (6,7)应该是1*2!*2!*2!

这样就考虑哪些是重复的,哪些是独有的就行

然后vector居然可以...比较相等

 #include <bits/stdc++.h>
using namespace std;
#define pb push_back
typedef long long LL;
const int mod = 1e9+;
const int maxn = + ;
vector<int>a[maxn];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
for(int j=;j<=x;j++){
int num;
scanf("%d",&num);
a[num].push_back(i);
}
}
sort(a+,a++m); long long ans=;
long long pos=;
for(int i=;i<=m;i++){
if(a[i-]==a[i]){
pos++; // cout<<pos<<end
ans=(ans*pos)%mod; }else{
pos=;
}
// cout<<ans<<endl;
}
printf("%lld\n",ans%mod);
return ;
}

Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) C的更多相关文章

  1. Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题

    Educational Codeforces Round 71 (Rated for Div. 2)-E. XOR Guessing-交互题 [Problem Description] ​ 总共两次询 ...

  2. Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - C. Magic Ship Time Limit: 2000 mSec P ...

  3. Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems(动态规划+矩阵快速幂)

    Problem   Educational Codeforces Round 60 (Rated for Div. 2) - D. Magic Gems Time Limit: 3000 mSec P ...

  4. Educational Codeforces Round 43 (Rated for Div. 2)

    Educational Codeforces Round 43 (Rated for Div. 2) https://codeforces.com/contest/976 A #include< ...

  5. Educational Codeforces Round 35 (Rated for Div. 2)

    Educational Codeforces Round 35 (Rated for Div. 2) https://codeforces.com/contest/911 A 模拟 #include& ...

  6. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) F. Isomorphic Strings 题目连接: http://cod ...

  7. Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes

    Codeforces Educational Codeforces Round 44 (Rated for Div. 2) E. Pencils and Boxes 题目连接: http://code ...

  8. Educational Codeforces Round 63 (Rated for Div. 2) 题解

    Educational Codeforces Round 63 (Rated for Div. 2)题解 题目链接 A. Reverse a Substring 给出一个字符串,现在可以对这个字符串进 ...

  9. Educational Codeforces Round 39 (Rated for Div. 2) G

    Educational Codeforces Round 39 (Rated for Div. 2) G 题意: 给一个序列\(a_i(1 <= a_i <= 10^{9}),2 < ...

  10. Educational Codeforces Round 48 (Rated for Div. 2) CD题解

    Educational Codeforces Round 48 (Rated for Div. 2) C. Vasya And The Mushrooms 题目链接:https://codeforce ...

随机推荐

  1. ios图文混编瀑布流

    ios图文混编瀑布流,利用UICollectionView 实现图文混编的瀑布流,支持section内容伸缩 http://www.huiyi8.com/pubuliu/

  2. html5--2.9新的布局元素(6)-figure/figcaption

    html5--2.9新的布局元素(6)-figure/figcaption 学习要点 了解figure/figcaption元素的语义和用法 通过实例理解figure/figcaption元素的用法 ...

  3. Laravel的三种安装方法总结

    Laravel号称巨匠级PHP框架,越来越多的PHPer选择它作为开发框架,作为一个Laravel初学者相信很多人向我一样被安装挡在了门外.所以今天结合文档和自己的学习经历总结一下Laravel的安装 ...

  4. Restore Points 制定回退方案

    Restore Points 制定回退方案 背景:Flashback Database 和 restore points 都可以提供一个基于时间点的回滚. 理论:1) Normal Restore P ...

  5. Linq 支持动态字查询集合, 也就是说根据传入的值进行查询。

    Linq 支持动态字查询集合, 也就是说根据传入的值进行查询. 比如我们有个类Patient, 其中有个字段PatientName, 现在有Patient集合, 想要查询PatientName为&qu ...

  6. [hdu3853]LOOPS(概率dp)

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望. 解题关键:概率dp反向求期望 ...

  7. Python 在windows上安装BeautifulSoup和request以及小案例

    Python以及PyCharm安装成功后,操作如下: 此时,代码import requests不报错了. 那么,Python 在windows上安装BeautifulSoup,怎么操作呢? 1. 打开 ...

  8. 【原】spring+springmvc+mybatis整合

    整合框架的代码结构: 最全约束: <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=&q ...

  9. Python 绘制你想要的数学函数图形

    Python 非常热门,但除非工作需要没有刻意去了解更多,直到有个函数图要绘制,想起了它.结果发现,完全用不着明白什么是编程,就可以使用它完成很多数学函数图的绘制. 通过以下两个步骤,就可以进行数学函 ...

  10. Kolla多节点环境安装OVN

    安装OVN组件 控制节点 ### 安装ovn-northd # wget https://copr.fedorainfracloud.org/coprs/leifmadsen/ovs-master/r ...