bzoj 3160 万径人踪灭 —— FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160
求出关于一个位置有多少对对称字母,如果 i 位置有 f[i] 对,对答案的贡献是 2^f[i] - 1;
然后减去连续的,用 manachar 求出回文长度,每个位置作为边界都是一种不合法情况;
求对称,首先把字符串中间穿插字符 '$',于是字符串的长度变成2倍;
考虑一对字母 s[x],s[y],如果 s[x] = s[y],其对称中心是 (x+y)/2;
放在加入字符后的字符串中,对称中心就是 x+y;
所以可以看出卷积了:f[i] = ∑(0<=j<=i) (s[j]==s[i-j]),其中 i 视为新字符串中的位置,j 和 i-j 视为原字符串中的位置;
注意卷积和 manachar 算的个数都要包括自己成对,否则判断挺麻烦...
这里卷积的两个多项式其实是一样的,所以只要用 FFT 算出一个,然后自己乘起来即可;
做下一步的时候注意清空,别忘了清空 n~lim 部分的值;
处理 bin 的边界是 n 而非 n-1,因为最多可能有 n 对。
(学习了 manachar 的简洁写法)
代码如下:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<),mod=1e9+;
db const Pi=acos(-1.0);
int n,rev[xn],lim=,l,len[xn],bin[xn],c[xn];
char ch[xn];
struct com{db x,y;}a[xn],b[xn],aa[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y};}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
void solve()
{
for(int i=;i<n;i++)a[i].x=(ch[i]=='a');
fft(a,);
for(int i=;i<lim;i++)b[i]=a[i]*a[i];
for(int i=;i<n;i++)a[i].x=(ch[i]=='b'),a[i].y=;//y=0
for(int i=n;i<lim;i++)a[i].x=,a[i].y=;//!!
fft(a,);
for(int i=;i<lim;i++)b[i]=b[i]+a[i]*a[i];
fft(b,-);
for(int i=;i<n+n;i++)c[i]=(c[i]+(int)(b[i].x/lim+0.5))%mod;
}
char s[xn];
int manachar()//+i self
{
int mx=,id=,ret=; s[]='$';
for(int i=;i<=n+n;i++)
if(i%==)s[i]='$';
else s[i]=ch[i>>];
for(int i=;i<=n+n;i++)
{
if(i<mx)len[i]=min(mx-i,len[id*-i]);
while(i-len[i]>=&&i+len[i]<=n+n&&s[i-len[i]]==s[i+len[i]])len[i]++;
if(i+len[i]>mx)mx=i+len[i],id=i;
ret=upt(ret+len[i]/);
}
return ret;
}
int main()
{
scanf("%s",ch); n=strlen(ch);
while(lim<=n+n)lim<<=,l++;//
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
bin[]=;
for(int i=;i<=n;i++)bin[i]=upt(bin[i-]+bin[i-]);
solve();
int ans=;
for(int i=;i<n+n;i++)ans=upt(ans+bin[(c[i]+)>>]-);//+1 -1
printf("%d\n",upt(ans-manachar()));
return ;
}
bzoj 3160 万径人踪灭 —— FFT的更多相关文章
- BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher
BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...
- BZOJ 3160: 万径人踪灭 [fft manacher]
3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...
- bzoj 3160 万径人踪灭——FFT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160 似乎理解加深了. 用卷积算相同的位置:先把 a 赋成1. b 赋成0,卷积一遍:再把 ...
- bzoj 3160 万径人踪灭 FFT
万径人踪灭 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1936 Solved: 1076[Submit][Status][Discuss] De ...
- bzoj 3160: 万径人踪灭 manachar + FFT
3160: 万径人踪灭 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 133 Solved: 80[Submit][Status][Discuss] ...
- 【BZOJ】3160: 万径人踪灭 FFT+回文串
[题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...
- bzoj 3160: 万径人踪灭【FFT+manacher】
考虑正难则反,我们计算所有对称子序列个数,再减去连续的 这里减去连续的很简单,manacher即可 然后考虑总的,注意到关于一个中心对称的两点下标和相同(这样也能包含以空位为对称中心的方案),所以设f ...
- BZOJ 3160: 万径人踪灭
Description 一个ab串,问有多少回文子序列,字母和位置都对称,并且不连续. Sol FFT+Manacher. 不连续只需要减去连续的就可以了,连续的可以直接Manacher算出来. 其他 ...
- BZOJ 3160 万径人踪灭 解题报告
这个题感觉很神呀.将 FFT 和 Manacher 有机结合在了一起. 首先我们不管那个 “不能连续” 的条件,那么我们就可以求出有多少对字母关于某一条直线对称,然后记 $T_i$ 为关于直线 $i$ ...
随机推荐
- 如何用迅雷下载在网页中的Flash动画或课件
对于框架网页而言,看地址栏可以发现后缀不是SWF,就是说该网站没有直接把Flash给你,右击该Flash也没有下载选项. 此时虽然右下角是Flash,但是左边和上面网页部分还是正常的元素,右击这些 ...
- 【windows socket+UDPserverclient】
Windows Socket+UDPserverclient Winsock是 Windows下套接字标准. 1.UDP socket编程: ...
- binary-tree-level-order-traversal I、II——输出二叉树的数字序列
I Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to righ ...
- 三行代码实现.NET MVC统计显示页面的执行时间 超简单的实现方法 分析页面执行效率
三行代码实现.NET MVC统计显示页面的执行时间 超简单的实现方法 分析页面执行效率 博客页脚处添加了页面执行时间统计显示,如下图所示,也可以直接查看网页页脚处. 实现方法非常简单,只需三行代 ...
- iOS应用数据存储的经常使用方式
ios程序中数据数据存储有下列5种方式 XML属性列表(plist)归档 Preference(偏好设置) NSKeyedArchiver归档(NSCoding) SQLite3 Core Data ...
- 使用Python处理CSV文件的一些代码示例
笔记:使用Python处理CSV文件的一些代码示例,来自于<Python数据分析基础>一书,有删改 # 读写CSV文件,不使用CSV模块,仅使用基础Python # 20181110 wa ...
- kubectl技巧之通过go-template截取属性
系列目录 在使用kubectl get获取资源信息的时候,可以通过-o(--output简写形式)指定信息输出的格式,如果指定的是yaml或者json输出的是资源的完整信息,实际工作中,输出内容过少则 ...
- 深入Garbage First垃圾收集器(一)术语
Garbage垃圾收集器的原理,在这篇博客中有讲到,可以拿来参考下, Getting Started with the G1 Garbage Collector(译) 另外在这篇博客中也有讲到很多垃圾 ...
- Oracle中,将毫秒数转换为timestamp类型的两种方法
在许多场景中,开发人员习惯用1970-01-01 00:00:00.000以来的毫秒数来表示具体的时间,这样可以将数据以NUMBER类型存储到数据库中,在某些时候方便比较,同样,有些时候我们需要 把这 ...
- 手机QQ后台清理不掉的秘密——anddroid悬浮窗
问题来自于一篇文章:手机QQ后台为何清不掉?MIUIproject师:全靠1像素的页面保命 出于好奇,想知道这一像素究竟是啥东西,用手机安全管家控制QQ的悬浮窗权限: 关闭QQ的悬浮窗权限,通过后台一 ...