题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160

求出关于一个位置有多少对对称字母,如果 i 位置有 f[i] 对,对答案的贡献是 2^f[i] - 1;

然后减去连续的,用 manachar 求出回文长度,每个位置作为边界都是一种不合法情况;

求对称,首先把字符串中间穿插字符 '$',于是字符串的长度变成2倍;

考虑一对字母 s[x],s[y],如果 s[x] = s[y],其对称中心是 (x+y)/2;

放在加入字符后的字符串中,对称中心就是 x+y;

所以可以看出卷积了:f[i] = ∑(0<=j<=i) (s[j]==s[i-j]),其中 i 视为新字符串中的位置,j 和 i-j 视为原字符串中的位置;

注意卷积和 manachar 算的个数都要包括自己成对,否则判断挺麻烦...

这里卷积的两个多项式其实是一样的,所以只要用 FFT 算出一个,然后自己乘起来即可;

做下一步的时候注意清空,别忘了清空 n~lim 部分的值;

处理 bin 的边界是 n 而非 n-1,因为最多可能有 n 对。

(学习了 manachar 的简洁写法)

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef double db;
int const xn=(<<),mod=1e9+;
db const Pi=acos(-1.0);
int n,rev[xn],lim=,l,len[xn],bin[xn],c[xn];
char ch[xn];
struct com{db x,y;}a[xn],b[xn],aa[xn];
com operator + (com a,com b){return (com){a.x+b.x,a.y+b.y};}
com operator - (com a,com b){return (com){a.x-b.x,a.y-b.y};}
com operator * (com a,com b){return (com){a.x*b.x-a.y*b.y,a.x*b.y+b.x*a.y};}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void fft(com *a,int tp)
{
for(int i=;i<lim;i++)
if(i<rev[i])swap(a[i],a[rev[i]]);
for(int mid=;mid<lim;mid<<=)
{
com wn=(com){cos(Pi/mid),tp*sin(Pi/mid)};
for(int j=,len=(mid<<);j<lim;j+=len)
{
com w=(com){,};
for(int k=;k<mid;k++,w=w*wn)
{
com x=a[j+k],y=w*a[j+mid+k];
a[j+k]=x+y; a[j+mid+k]=x-y;
}
}
}
}
void solve()
{
for(int i=;i<n;i++)a[i].x=(ch[i]=='a');
fft(a,);
for(int i=;i<lim;i++)b[i]=a[i]*a[i];
for(int i=;i<n;i++)a[i].x=(ch[i]=='b'),a[i].y=;//y=0
for(int i=n;i<lim;i++)a[i].x=,a[i].y=;//!!
fft(a,);
for(int i=;i<lim;i++)b[i]=b[i]+a[i]*a[i];
fft(b,-);
for(int i=;i<n+n;i++)c[i]=(c[i]+(int)(b[i].x/lim+0.5))%mod;
}
char s[xn];
int manachar()//+i self
{
int mx=,id=,ret=; s[]='$';
for(int i=;i<=n+n;i++)
if(i%==)s[i]='$';
else s[i]=ch[i>>];
for(int i=;i<=n+n;i++)
{
if(i<mx)len[i]=min(mx-i,len[id*-i]);
while(i-len[i]>=&&i+len[i]<=n+n&&s[i-len[i]]==s[i+len[i]])len[i]++;
if(i+len[i]>mx)mx=i+len[i],id=i;
ret=upt(ret+len[i]/);
}
return ret;
}
int main()
{
scanf("%s",ch); n=strlen(ch);
while(lim<=n+n)lim<<=,l++;//
for(int i=;i<lim;i++)
rev[i]=((rev[i>>]>>)|((i&)<<(l-)));
bin[]=;
for(int i=;i<=n;i++)bin[i]=upt(bin[i-]+bin[i-]);
solve();
int ans=;
for(int i=;i<n+n;i++)ans=upt(ans+bin[(c[i]+)>>]-);//+1 -1
printf("%d\n",upt(ans-manachar()));
return ;
}

bzoj 3160 万径人踪灭 —— FFT的更多相关文章

  1. BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

    BZOJ 3160: 万径人踪灭 题目传送门 [题目大意] 给定一个长度为n的01串,求有多少个回文子序列? 回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称. 假如 ...

  2. BZOJ 3160: 万径人踪灭 [fft manacher]

    3160: 万径人踪灭 题意:求一个序列有多少不连续的回文子序列 一开始zz了直接用\(2^{r_i}-1\) 总-回文子串 后者用manacher处理 前者,考虑回文有两种对称形式(以元素/缝隙作为 ...

  3. bzoj 3160 万径人踪灭——FFT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3160 似乎理解加深了. 用卷积算相同的位置:先把 a 赋成1. b 赋成0,卷积一遍:再把 ...

  4. bzoj 3160 万径人踪灭 FFT

    万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1936  Solved: 1076[Submit][Status][Discuss] De ...

  5. bzoj 3160: 万径人踪灭 manachar + FFT

    3160: 万径人踪灭 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 133  Solved: 80[Submit][Status][Discuss] ...

  6. 【BZOJ】3160: 万径人踪灭 FFT+回文串

    [题意]给定只含'a'和'b'字符串S,求不全连续的回文子序列数.n<=10^5. [算法]FFT+回文串 [题解]不全连续的回文子序列数=回文子序列总数-回文子串数. 回文子串数可以用回文串算 ...

  7. bzoj 3160: 万径人踪灭【FFT+manacher】

    考虑正难则反,我们计算所有对称子序列个数,再减去连续的 这里减去连续的很简单,manacher即可 然后考虑总的,注意到关于一个中心对称的两点下标和相同(这样也能包含以空位为对称中心的方案),所以设f ...

  8. BZOJ 3160: 万径人踪灭

    Description 一个ab串,问有多少回文子序列,字母和位置都对称,并且不连续. Sol FFT+Manacher. 不连续只需要减去连续的就可以了,连续的可以直接Manacher算出来. 其他 ...

  9. BZOJ 3160 万径人踪灭 解题报告

    这个题感觉很神呀.将 FFT 和 Manacher 有机结合在了一起. 首先我们不管那个 “不能连续” 的条件,那么我们就可以求出有多少对字母关于某一条直线对称,然后记 $T_i$ 为关于直线 $i$ ...

随机推荐

  1. vue2.0 自定义 折叠列表(Accordion)组件

    1.自定义  折叠列表 Accordion.vue (1)sass  版本 <!-- 折叠列表 组件 --> <template> <nav :class="$ ...

  2. 【Android归纳】阿里笔试题之Android网络优化

    记得这是阿里校招笔试的一道问答题 答案是小伙伴们之后一起拼出来的,不乏有些飘忽的东西,须要的朋友能够做个參考(详细细节能够自行百度).欢迎提出更好的建议. 在client方面: 1.降低网络请求的数量 ...

  3. Jenkins系列之-—06 Ant构建

    一.Ant 简介&构建环境 Apache Ant 是由 Java 语言开发的工具 构建ant环境: 1). 安装jdk,设置JAVA_HOME ,PATH ,CLASS_PATH 2). 下载 ...

  4. 移植alsa-lib遇到的问题

    移植alsa-lib遇到的问题 linux audio    alsa lib    VERSIONED_SYMBOLS 这两天移植alsa lib时遇到了一个问题,被困住了好久. 做个记录,以后再被 ...

  5. Java获取本机MAC地址[转]

    原文地址:https://www.cnblogs.com/hxsyl/p/3422191.html Java获取本机MAC地址   为什么写这个呢?因为前几天看见网上有采用windows命令获取局域网 ...

  6. OpenCV for Python 学习笔记 一

    本人的学习笔记主要记录的是学习opencv-python-tutorials这本书中的笔记 今天晚上简单学习OpenCV for Python如何绘图,主要用了这几个函数(这几个函数可在:http:/ ...

  7. Java8新特性(一)概览

    最近看了好几段Java代码和以往的风格很不一样,都有点不太适应了,后来一查原来是Java8的新特性. 为了保持对技术的敏感性(面试...),这里我们一起来学习下Java8的新特性. 如果从技术角度来看 ...

  8. poj3040(双向贪心)

    Allowance Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1540   Accepted: 637 Descript ...

  9. 06 HTTP协议缓存控制

    一:HTTP协议缓存控制 第1次请求时 200 ok 第2次请求时 304 Not Modified 未修改状态 解释: 在网络上,有一些缓存服务器,另, 浏览器自身也有缓存功能. 当我们第一次某图片 ...

  10. MySQL 存储过程 (2)

    通过存储过程查询数据库返回条数操作 第一步:登录自定义用户建立存储过程需要调用测试用到的student表,具体操作如下 (1) 登录用户