传送门

不会……

两篇加在一起都看不懂……

https://www.cnblogs.com/cellular-automaton/p/8241128.html

https://www.luogu.org/blog/cjyyb/solution-p3768

 //minamoto
#include<iostream>
#include<cstdio>
#include<map>
#define ll long long
using namespace std;
const int N=4e6+;
map<ll,ll> mp;
ll sum[N],phi[N],pri[N],cnt,vis[N],mod6,mod;
//mod是2的逆元,mod6是6的逆元
void init(ll p){
vis[]=sum[]=;
for(int i=;i<N;++i){
if(!vis[i]) pri[++cnt]=i,phi[i]=i-,sum[i]=1ll*i*i%p*phi[i]%p;
for(int j=;j<=cnt,i*pri[j]<N;++j){
vis[i*pri[j]]=;
int now=i*pri[j];
if(i%pri[j]==){
phi[now]=phi[i]*pri[j]%p;
sum[now]=phi[now]*now%p*now%p;
break;
}
phi[now]=phi[i]*(pri[j]-)%p;
sum[now]=phi[now]*now%p*now%p;
}
}
for(int i=;i<N;++i) (sum[i]+=sum[i-])%=p;
}
ll ksm(ll x,ll y,ll p){
ll res=;
while(y){
if(y&) (res*=x)%=p;
(x*=x)%=p,y>>=;
}
return res;
}
ll calc(ll n,ll p){
n%=p;
ll res=((+n)*n%p)*mod%p;
(res*=res)%=p;
return res;
}
ll calcs(ll n,ll p){
n%=p;
ll res=(n*(n+)%p)*(*n+)%p;
(res*=mod6)%=p;
return res;
}
ll calcsum(ll n,ll p){
if(n<N) return sum[n];
if(mp.count(n)) return mp[n];
ll x=,res=calc(n,p);
while(x<=n){
ll y=n/(n/x);
res=((res-(calcs(y,p)-calcs(x-,p)+p)%p*calcsum(n/x,p)%p)+p)%p;
x=y+;
}
return mp[n]=res;
}
int main(){
// freopen("testdata.in","r",stdin);
ll p,n;
scanf("%lld%lld",&p,&n);
mod=ksm(,p-,p),mod6=ksm(,p-,p);
init(p);
ll x=,ans=;
while(x<=n){
ll y=n/(n/x);
(ans+=((calcsum(y,p)-calcsum(x-,p)+p)%p*calc(n/x,p)%p))%=p;
x=y+;
}
printf("%lld\n",ans);
return ;
}

洛谷P3768 简单的数学题(莫比乌斯反演+狄利克雷卷积+杜教筛)的更多相关文章

  1. 洛谷P3768 简单的数学题 莫比乌斯反演+杜教筛

    题意简述 求出这个式子 \[ \sum_{i=1}^n\sum_{j=1}^n ij(i,j) \bmod p \] 做法 先用莫比乌斯反演拆一下式子 \[ \begin{split} \sum_{i ...

  2. 中国剩余定理 & 欧拉函数 & 莫比乌斯反演 & 狄利克雷卷积 & 杜教筛

    ssplaysecond的博客(请使用VPN访问): 中国剩余定理: https://ssplaysecond.blogspot.jp/2017/04/blog-post_6.html 欧拉函数: h ...

  3. 【刷题】洛谷 P3768 简单的数学题

    题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数n和一个整数p,你需要求出(\(\sum_{i=1}^n\sum_{j=1}^n ijgcd(i,j))~mod~p\),其中gcd ...

  4. 洛谷 - P3768 - 简单的数学题 - 欧拉函数 - 莫比乌斯反演

    https://www.luogu.org/problemnew/show/P3768 \(F(n)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{n}ijgcd(i ...

  5. 洛谷 P3768 简单的数学题 解题报告

    P3768 简单的数学题 题目描述 由于出题人懒得写背景了,题目还是简单一点好. 输入一个整数\(n\)和一个整数\(p,\)你需要求出\((\sum_{i=1}^n\sum_{j=1}^n ijgc ...

  6. 洛谷P3768 简单的数学题

    解: 神奇的一批......参观yyb巨神的博客. 大致思路就是第一步枚举gcd,发现后面有个限制是gcd=1,用反演,得到的F(x)是两个等差数列求积. 然后发现有个地方我们除法的除数是乘积,于是换 ...

  7. 洛谷 P3768 简单的数学题

    https://www.luogu.org/problemnew/show/P3768 化简一下式子,就是$\sum_{d=1}^ncalc(d)d^2\varphi(d)$ 其中$calc(d)=\ ...

  8. 洛谷P3768 简单的数学题 【莫比乌斯反演 + 杜教筛】

    题目描述 求 \[\sum\limits_{i=1}^{n} \sum\limits_{j=1}^{n} i*j*gcd(i,j) \pmod{p}\] \(n<=10^{10}\),\(p\) ...

  9. 洛谷 P3768 简单的数学题 (莫比乌斯反演)

    题意:求$(\sum_{i=1}^{n}\sum_{j=1}^{n}ijgcd(i,j))mod p$(p为质数,n<=1e10) 很显然,推式子. $\sum_{i=1}^{n}\sum_{j ...

随机推荐

  1. re.sub用法

    re.sub功能是对于一个输入的字符串,利用正则表达式,来实现字符串替换处理的功能返回处理后的字符串 re.sub共有五个参数 三个必选参数pattern,repl,string 两个可选参数coun ...

  2. 实例化Flask的参数和对app的配置

    Flask 是一个非常灵活且短小精干的web框架 , 那么灵活性从什么地方体现呢? 有一个神奇的东西叫 Flask配置 , 这个东西怎么用呢? 它能给我们带来怎么样的方便呢? 首先展示一下: from ...

  3. HDU - 1495 非常可乐 【BFS】

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1495 思路 首先 如果可乐的体积 是奇数 那么是无解的 然后 如果能够得到两杯 都是一般容量的可乐 那 ...

  4. Linux下新建oracle用户

    su - oraclesqlplus / as sysdba the procedure of dropping user are as follow: select sid,serial# from ...

  5. Spring Boot2.0之 原理—创建内置Tomcat容器

    前面所述的https://www.cnblogs.com/toov5/p/9823728.html 中的第一条先不赘述了,就是玩了maven 重点介绍后两条 首先内置Tomcat: SpringBoo ...

  6. flash滑杆控制图片横向滚动

    flash滑杆控制图片横向滚动是一款FLASH动画图片左右滚动素材,滑杆控制滚动,效果很酷,带FLASH源文件. 下载:http://www.huiyi8.com/sc/9452.html

  7. asterisk ss7 ${CALLERID(rdnis)}变量为空问题

    asterisk 1.8.16+chan_ss7 version 2.1.1b ${CALLERID(rdnis)}变量取不到信息问题,解决 编辑 funcs/func_callerid.c chan ...

  8. Qt容器组件(一)之QGroupBox、QScrollArea、QToolBox、QTabWidget

    QT中有九种容器组件,分别是组合框QGroupBox.滚动区QScrollArea.工具箱QToolBox.选项卡QTabWidget.控件栈QWidgetStack.框架QFrame.组件QWidg ...

  9. 【Python】String 字符串

    1. split() split()通过指定分隔符对字符串进行切片,如果参数num 有指定值,则仅分隔 num 个子字符串 split()方法语法:str.split(str="" ...

  10. C++多态的实现条件

    #include <iostream> class Person{ public: virtual void say(){ std::cout<<"person&qu ...