题目链接:http://lx.lanqiao.cn/problem.page?gpid=T37

题意:中文题诶~

思路:nim博弈

个人感觉这题最难的地方是将题目转换为博弈模型,如果能将之转换为博弈模型的话题目也就迎刃而解啦;

本题的解法是将相邻的两个和尚之间的台阶数目看做一堆石头,那么就变成nim博弈啦,对于和尚数目为奇数的情况,直接将最后一个和尚忽略或者在最后那个和尚后面再加一个和尚即可,后者相当于加了一堆数目为0的石头,和前者没什么区别;

本题和一般nim博弈的不同之处是本题中石头的数目是可以增加的,其实就是将后面那个和尚往后移啦;如果直接按照博弈思路去求那个bi'的话得到的解可能不是最小的(在本题中最后一组数据会wa)。要得到最小解的话就需要我们枚举每一个和尚并分别判断石头增加和减少的情况啦。。

直接求bi'的代码:

 #include <iostream>
#include <stdio.h>
#define MAXN 110
using namespace std; int a[MAXN], b[MAXN]; int main(void){
char ch;
int pos=;
while(){
scanf("%d%c", &a[pos++], &ch);
if(ch=='\n'){
break;
}
}
if(pos&){
pos--;
}
for(int i=; i<pos; i+=){
b[i>>]=a[i+]-a[i]-;
}
pos>>=;
int ans=;
for(int i=; i<pos; i++){
ans^=b[i];
}
if(!ans){//面对奇异局势,必败
cout << - << endl;
}else{
for(int i=; i<pos; i++){
if((ans^b[i])<b[i]){//找到bi'替换bi使变成奇异局势
int cnt=ans^b[i];
cout << a[i<<] << " " << a[i<<]+(b[i]-cnt) << endl;
break;
}
}
}
return ;
} // 1 4 8 12 16 19 28 33 35 36 40 45 52 66 67 68 69 77 85 99 102 134 155 211 214 216 355 376 400 412
// 134 148

枚举求解的代码:

#include <iostream>
#include <stdio.h>
#define MAXN 110
using namespace std; int a[MAXN], b[MAXN]; int main(void){
char ch;
int pos=;
while(){
scanf("%d%c", &a[pos++], &ch);
if(ch=='\n'){
break;
}
}
if(pos&){
pos--;
}
int len=pos;
for(int i=; i<pos; i+=){
b[i>>]=a[i+]-a[i]-;
}
pos>>=;
int ans=;
for(int i=; i<pos; i++){//面对奇异局势,必败
ans^=b[i];
}
if(!ans){
cout << - << endl;
}else{
for(int i=; i<len; i++){//枚举每一个人移动的情况
for(int j=a[i]+; j<a[i+]; j++){//当前和尚可以向前移动到前一个和尚下面一个台阶
if(i&){//若当前是第偶数个和尚,则相当于当前堆石头数目增加
int cnt=j-a[i-]-;
if(!(ans^cnt^b[i/])){//移动后变成奇异局势
cout << a[i] << " " << j << endl;
return ;
}
}else{//当前是第奇数个和尚,则相当于当前堆石头数目减少
int cnt=a[i+]-j-;
if(!(ans^cnt^b[i/])){//移动后变成奇异局势
cout << a[i] << " " << j << endl;
return ;
}
}
}
}
}
return ;
}

蓝桥杯T37(nim博弈)的更多相关文章

  1. 2016蓝桥杯"取球博弈"问题

    较难,网上有能得出正确结果的代码,但是读了一下,像是拼凑出的结果,逻辑不通,代码和注释不符 参考网上代码写了一版,结构相对清晰,注释比较详细 题目很长: 两个人玩取球的游戏.一共有N个球,每人轮流取球 ...

  2. java实现第七届蓝桥杯取球博弈

    题目9.取球博弈 取球博弈 两个人玩取球的游戏. 一共有N个球,每人轮流取球,每次可取集合{n1,n2,n3}中的任何一个数目. 如果无法继续取球,则游戏结束. 此时,持有奇数个球的一方获胜. 如果两 ...

  3. 取球游戏_nyoj_518(博弈-蓝桥杯原题).java

    取球游戏 时间限制: 1000 ms  |  内存限制: 65535 KB 难度: 2   描述 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下 ...

  4. 2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈

    2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈 题目描述 **取球博弈 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并 ...

  5. 第九届蓝桥杯国赛+第二天的第11届acm省赛的总结

    第九届蓝桥杯国赛+第二天的第11届acm省赛的总结 25号坐的去北京的火车,10个小时的火车,然后挤了快两个小时的地铁,最终达到了中国矿业大学旁边的订的房间.12个小时很难受,晕车症状有点严重,吃了快 ...

  6. HDU 2509 Nim博弈变形

    1.HDU 2509  2.题意:n堆苹果,两个人轮流,每次从一堆中取连续的多个,至少取一个,最后取光者败. 3.总结:Nim博弈的变形,还是不知道怎么分析,,,,看了大牛的博客. 传送门 首先给出结 ...

  7. HDU 1907 Nim博弈变形

    1.HDU 1907 2.题意:n堆糖,两人轮流,每次从任意一堆中至少取一个,最后取光者输. 3.总结:有点变形的Nim,还是不太明白,盗用一下学长的分析吧 传送门 分析:经典的Nim博弈的一点变形. ...

  8. 2012年 蓝桥杯预赛 java 本科 题目

    2012年 蓝桥杯预赛 java 本科 考生须知: l  考试时间为4小时. l  参赛选手切勿修改机器自动生成的[考生文件夹]的名称或删除任何自动生成的文件或目录,否则会干扰考试系统正确采集您的解答 ...

  9. 蓝桥杯历届试题 地宫取宝 dp or 记忆化搜索

    问题描述 X 国王有一个地宫宝库.是 n x m 个格子的矩阵.每个格子放一件宝贝.每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走 ...

随机推荐

  1. 关于SAP的编码范围

    [转自 http://blog.sina.com.cn/s/blog_6466e5f70100ithw.html ] 1.Number Range的通用Tcode:SNRO 2.Number Rang ...

  2. python连接redis并插入url

    #!/usr/bin/env python # -*- coding:utf8 -*- import redis ''' 这种连接是连接一次就断了,耗资源.端口默认6379,就不用写 r = redi ...

  3. 图形绘制处理逻辑VC

    // 逻辑1:先从资源中读取背景资源,然后将绘图对象与DC绑定,通过绘图对象绘出背景 // 逻辑2:先从资源中读取背景资源,新建一个MEMDC,将绘图对象与MEMDC绑定,并且 // 通过绘图对象在内 ...

  4. python循环次数的使用

    a=[str(i) for i in range(88888,88912)] b=[str(i) for i in range(77777,77785)] def f(a,b,k=0,m=0): n= ...

  5. BZOJ 1206 [HNOI2005]虚拟内存:模拟

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1206 题意: 内存大小为n(外存无限大),共有m次访问,每一次访问的信息编号为p. 对于每 ...

  6. 分享知识-快乐自己:IDEA 导入(web)项目并部署到 Tomcat

    IDEA 导入 (WEB)项目并部署到 Tomcat 1):导入 Web 项目 2):首先更改 JDK 环境  右键项目: 第一步:点击 Modules  第二步:点击 Libraries 第三步:点 ...

  7. centos7在VMware下配置网络连接

    安装成功以后,首先更改vmwar的虚拟网络设置 1.参考连接:http://www.cnblogs.com/liongis/p/3265458.html 2.然后将虚拟机的设置里面将网络配置的连接方式 ...

  8. Centos7配置https,及多个https配置

    Centos7.2配置https,及多个https配置 1.单个https配置 检查相关依赖,如果没有就yum安装 yum install mod_ssl openssl rpm -qa| grep ...

  9. 机器视觉 之 Gabor Feature

    在机器视觉中,gabor feature是一种比较常见的特征,因为其可以很好地模拟人类的视觉冲击响应而被广泛应用于图像处理, gabor feature 一般是通过对图像与gabor filter做卷 ...

  10. python之网络编程(概述及SOCKET)

    概述(TCP/IP协议是一个协议族): TCP/IP 协议按照四层怎么划分:链路层,网络层,传输层,应用层(实际上是四层) TCP/IP 协议按照七层怎么划分:物理层,数据链路层,网络层,传输层,会话 ...