题意:

$\sum\limits_{\begin{array}{*{20}{c}}
{a < = x < = b}\\
{c < = y < = d}
\end{array}} {\gcd (x,y) = = k} $

解题关键:

现令$f(i)$表示有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$,$1 <  = x <  = n,1 <  = y <  = m$

$F(d)$为有多少对${(x,y)}$满足 ${\gcd (x,y) =  = d}$的倍数

$f(d) = \sum\limits_{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}} {\gcd (x,y) = = d} $

$\begin{array}{l}
F(d) = \frac{n}{d} * \frac{m}{d}\\
\begin{array}{*{20}{l}}
{F(d) = \sum\limits_{d|x} {f(x)} \Rightarrow }\\
{f(d) = \sum\limits_{d|x} {u(\frac{x}{d})F(x)} = \sum\limits_{d|x} {u(\frac{x}{d})\left\lfloor {\frac{n}{x}} \right\rfloor } \left\lfloor {\frac{m}{x}} \right\rfloor }
\end{array}\\
= \sum\limits_{d|x}^{\min (n,m)} {u(\frac{x}{d})} \left\lfloor {\frac{n}{x}} \right\rfloor \left\lfloor {\frac{m}{x}} \right\rfloor
\end{array}$

再根据二维前缀和的型,$ans = g(b,d,k) + g(a - 1,c - 1,k) - g(a - 1,d,k) - g(b,c - 1,k)$

法二:稍微转化一下。

$\begin{array}{*{20}{l}}
{f(d) = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}}}\gcd (x,y) = = d}\\
{ = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = n}\\
{1 < = y < = m}
\end{array}}}\gcd (\frac{x}{d},\frac{y}{d}) = = 1}\\
{\begin{array}{*{20}{l}}
{ = {\sum _{\begin{array}{*{20}{c}}
{1 < = x < = \frac{n}{d}}\\
{1 < = y < = \frac{m}{d}}
\end{array}}}\gcd (x,y) = = 1}\\
{ = \sum\limits_{i = 1}^{\min (\frac{n}{d},\frac{m}{d})} u (i)F(i)}
\end{array}}\\
{ = \sum\limits_{i = 1}^{\min (\frac{n}{d},\frac{m}{d})} u (i)\left\lfloor {\frac{n}{{di}}} \right\rfloor \left\lfloor {\frac{m}{{di}}} \right\rfloor }\\
{}
\end{array}$

预处理前缀和+分块,$n/i$这种类型的一般要考虑重复性,利用分块可以优化到根号的复杂度。

观察式子,会发现$\left\lfloor {\frac{n}{d}} \right\rfloor $最多有$2\sqrt n $个取值,同理,$\left\lfloor {\frac{m}{d}} \right\rfloor $最多有$2\sqrt m $个取值,枚举这$2(\sqrt n  + \sqrt m )$个取值,对莫比乌斯函数维护一个前缀和,可以在$O(\sqrt n )$内求出解。

n/(n/i)就是满足商为n/i的i的最大值

复杂度的详细证明:http://blog.csdn.net/outer_form/article/details/50590197

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//莫比乌斯函数线性筛法
const int maxn=+;
bool vis[maxn];
int prime[maxn],mu[maxn],sum1[maxn];
void init_mu(int n){
int cnt=;
mu[]=;
for(int i=;i<n;i++){
if(!vis[i]){
prime[cnt++]=i;
mu[i]=-;
}
for(int j=;j<cnt&&i*prime[j]<n;j++){
vis[i*prime[j]]=;
if(i%prime[j]==) {mu[i*prime[j]]=;break;}
else { mu[i*prime[j]]=-mu[i];}
}
}
for(int i=;i<n;i++){
sum1[i]=sum1[i-]+mu[i];
}
}
inline int read(){
char k=;char ls;ls=getchar();for(;ls<''||ls>'';k=ls,ls=getchar());
int x=;for(;ls>=''&&ls<='';ls=getchar())x=(x<<)+(x<<)+ls-'';
if(k=='-')x=-x;return x;
}
int fun(int n,int m,int k){
n/=k,m/=k;
if(n>m) swap(n,m);
int ans=,pos;
for(int i=;i<=n;i=pos+){
pos=min(n/(n/i),m/(m/i));
ans+=(sum1[pos]-sum1[i-])*(n/i)*(m/i);
}
return ans;
}
int main(){
int t,a,b,c,d,k;
init_mu();
t=read();
while(t--){
a=read(),b=read(),c=read(),d=read(),k=read();
int t1=fun(b,d,k),t2=fun(a-,c-,k),t3=fun(a-,d,k),t4=fun(b,c-,k);
int ans=t1+t2-t3-t4;
printf("%d\n",ans);
}
}

  

[bzoj2301]Problem b莫比乌斯反演+分块优化的更多相关文章

  1. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  2. [HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

    题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? ...

  3. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  4. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

  5. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  6. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  7. BZOJ2301/LG2522 「HAOI2011」Problem B 莫比乌斯反演 数论分块

    问题描述 BZOJ2301 LG2522 积性函数 若函数 \(f(x)\) 满足对于任意两个最大公约数为 \(1\) 的数 \(m,n\) ,有 \(f(mn)=f(m) \times f(n)\) ...

  8. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  9. BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

    分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的, ...

随机推荐

  1. 继承ViewGroup类

    Android中,布局都是直接或间接的继承自ViewGroup类,其中,ViewGroup的直接子类目前有: AbsoluteLayout, AdapterView<T extends Adap ...

  2. IOS GameCenter验证登陆

    #import "GameKitHelper.h" #import "GameConstants.h" @interface GameKitHelper () ...

  3. 九度OJ 1008:最短路径问题 (最短路)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:8064 解决:2685 题目描述: 给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费 ...

  4. 使用python实现二分法查找

    最近开始学习mit的python课程,其中手工实现的一个关于二分法查找的练习代码个人感觉比较有参考价值,贴上来分享交流一下. 主要功能是在1-100中自己猜测一个数值,随后系统产生数值看是否符合猜测, ...

  5. 近年来世界各地ICO的花式骗局盘点

    很多人说区块链是骗局,其实不然,区块链是一种安全的互联网技术,可以解决当下很多行业的痛点,但也确实存在一些不法分子利用区块链进行行骗,下面整理了世界各地的一些ICO骗局,一起来看看吧. 案例一:越南I ...

  6. postgres 备份数据库

    https://www.postgresql.org/docs/9.1/static/app-pgdump.html bash-4.2$ pg_dump -Fc xianlan_prod > / ...

  7. Linux 下搭建 Sonatype Nexus Maven 私服

    一.为什么需要搭建mave私服 如果没有私服,我们所需的所有构件都需要通过maven的中央仓库和第三方的Maven仓库下载到本地,而一个团队中的所有人都重复的从maven仓库下 载构件无疑加大了仓库的 ...

  8. HTML语义化理解

    对所要表达的事物或者思想使用正确的标签. 例如:标题用<h > 来表示. 在<table>中加入summary的简介.   在<a>中加入title 在<im ...

  9. 磁卡ID卡IC卡的区别【转】

    本文转载自:https://blog.csdn.net/trap94/article/details/50614451 今天被一个朋友问到ID卡和IC卡有什么区别,还真给问住了.虽然平时经常用到这些卡 ...

  10. 使用pidof/kill组合命令,变相解决mediaserver内存泄漏【转】

    本文转载自:https://blog.csdn.net/lj402159806/article/details/78950384 在5.1系统下mediaserver有内存泄漏的问题,原因在于使用ca ...